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Abstract

Climate change and variability poses a significant hindrance on agri-
cultural productivity. The adverse effects are particularly concerning in
many African countries that rely more on rainfed subsistence agriculture
for livelihood. The promotion of climate smart agriculture technologies as
a pathway to enhancing food security, farmer’s welfare, and providing cli-
mate adaptation and mitigation benefits is one of the several interventions
aimed at improving agricultural productivity. However, there has been
a dearth of evidence on the determinants of adoption of climate smart
agriculture practices as well as the impact of climate smart agriculture
practices on food security and household welfare. This paper contributes
to this knowledge gap by using the probit model to explore the drivers
of uptake of climate smart agriculture practices and the inverse probabil-
ity weighting regression model and the instrumental variable approach to
assess the impact on food security and household savings and household
vulnerability. We find that the adoption of climate smart agriculture prac-
tices among smallholder farmers is influenced by land ownership, climatic
variables, land terrain, and household sociodemographic characteristics.
The study further revealed that adoption of climate smart agriculture
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practices leads to reduction in household savings and household vulnera-
bility but leads to improved food security. The findings suggest the need
to promote climate smart agriculture practices aimed at livestock man-
agement, enhanced agricultural extension work and reduced resource con-
straints that inhibit farmer’s capacity to adopt complementary practices
among others.

Key Words: Climate Smart, food security, Savings, Vulnerability
JEL Classification: Q01, Q18, Q54, O13

1 Introduction

Globally, climate change and variability poses a significant hindrance on agri-
cultural productivity and agricultural transformation with increased experiences
of unpredictable and erratic rainfall and severe temperature that threaten food
security and rural livelihoods (see Ching et al., 2011; Williams et al., 2017;
Fadairo et al., 2019). The adverse effects are particularly concerning in many
African countries that rely more on rain fed subsistence agriculture for liveli-
hood. The predictions of climate models vary from one region to another and
depend on the type of economy with cooler temperate regions experiencing mild
impacts, but with some benefits, while drier regions such as Sub-Saharan Africa
(SSA) suffer severe impacts (Kurukulasuriya and Mendelsohn 2008; Gbetibouo
and Hassan 2005).

In developing countries, agriculture remains the mainstay of most economies
(Adhikari et al., 2015, Martey et al., 2021). In particular, the smallholder agri-
cultural system in the SSA region has been identified as one of the world’s
economic subsectors that are most at risk of climate change because it depends
heavily on natural resources and rain fed agriculture (Tibesigwa et al., 2020).
This developing region is characterized by very poor economies that have little or
no capacity to deal with climate shocks (Kurukulasuriya and Mendelsohn 2008).
A significant proportion of the African population still resides in marginalized
rural areas. Little land for agricultural production, low adaptive capacity of
famers coupled with current climate-related stressors such as drought, floods,
high temperature and rainfall variability, make African farmers highly suscep-
tible to the impacts of climate change and variability. This leaves smallholder
farmers and their households with persistent low agricultural productivity and
limited transformation of the food system to ensure reduced household vulner-
ability, improved food security and livelihood (Martey et al., 2021). Over the
years, several development interventions aimed at improving agricultural pro-
ductivity as a pathway for enhancing the welfare of farmers have emerged. High
on the list of adaptation strategies to reduce vulnerability to climate change is
the use of climate smart agriculture (CSA) practices. CSA has also emerged as
a framework to capture the concept that agricultural systems can be developed
and implemented to simultaneously improve food security, rural livelihoods, and
provide climate adaptation and mitigation benefits (Scherr et al., 2012).

FAO (2010) define CSA as agriculture that sustainably increases productiv-
ity, resilience to climate change, reduces greenhouse gas emissions (mitigation),
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and enhances the achievement of national food security and development goals.
Lipper et al., (2014; 2018) defines CSA as an approach for transforming and
reorienting agricultural development under the new realities of climate change.
Smallholder farmers have subsequently enhanced their efforts towards adapting
to changing climate. However, they require support to lift the limitations they
face in putting their knowledge into practice. Despite the increased promotion
of CSA technologies, there is still limited consensus on its effectiveness. Lit-
tle is also known about the links between CSA and livelihood diversification
strategies and climate resilience in vulnerable settings. Thus, it is inherent to
investigate the drivers of CSA adoption among smallholder farmers to under-
stand how to put the know how into practice. It is also important to understand
the effectiveness of CSA technologies in enhancing food security and livelihood
of smallholder farmers.

There is growing interest by researchers across the globe to understand the
impacts of climate change on agricultural systems in Africa (Kurukulasuriya
and Mendelsohn 2008; Gbetibouo and Hassan 2005). Other studies have also
assessed the reasons for low adaptive capacity of the smallholder agricultural
sector (Amadu et al., 2020; Komba and Muchapondwa 2018; Di Falco 2014;
Di Falco 2011), and how climate stressors, in turn, affect the national food
security, household welfare and development goals in the region (Adhikari et al.,
2015). Hence, knowledge about the impacts of climate change and the drivers
of adaptation strategies has improved significantly over the past few decades.
However, the linkage between CSA practices and household vulnerability, food
security and welfare still need further research in order to provide policymakers
and development practitioners with relevant information. For instance, there is
very little evidence demonstrating whether the adoption of CSA by smallholder
farmers in Africa is welfare enhancing or not. As a result, most donor funded
projects and policy interventions in the region are fervently endorsed based
on weak evidence (Tibesigwa et al., 2020). In addition, existing studies have
either assessed the effect of CSA on household livelihood using individual specific
CSA practices or constructed an index of CSA practices (Amadu et al., 2020;
Collins-Sowah 2018; Bezu et al., 2014; Asfaw et al., 2012). The diversity and
heterogeneity of climate and agricultural practices among countries in Africa
suggest the need for context specific evidence.

This paper adopts a different approach that looks at a portfolio of CSA prac-
tices and management options on production risk within a developing country
perspective. We consider water management and land management practices as
adaptation strategies that offers insurance against the risk associated with yield
loss from the changing climate and growing conditions. Using a sample of 14,585
smallholder farmers in 8 provinces of Zimbabwe and instrumental variable and
inverse probability weighting regression models, we contribute to the body of
knowledge on CSA practices and their effect on household vulnerability, food
security and household welfare. Zimbabwe presents an interesting case study to
examine this relationship given that a huge proportion of rural households are
beneficiaries of the fast-track land reform programme which started around 1999
and depended heavily on rainfed agriculture for survival. Furthermore, some of
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these farmers come from a very poor background with limited ability to invest
in CSA. As a result, the government and NGOs have come up with intervention
programmes to assist farmers to adapt to climate change, yet there is no evi-
dence to show that these projects are working or not. Given this background,
we ask the following questions, i) What influences the uptake of CSA practices
among smallholder farmers in Zimbabwe? ii) What is the impact of adopting
CSA practices on household savings, food security and household vulnerability
to climate change?

The paper contributes to the scant literature on impact of adoption of a
portfolio of CSA technologies in the face of changing weather conditions and in
the context of climate change adaptation. The paper considers a combination
of adaptation measures that builds upon risk reducing options through fertil-
izer application, improved crop varieties and agricultural water management.
Specifically, the study uses a different approach by employing the Principal
Component Analysis to identify adopters and non-adopters of CSA practices.
Then assess the impact on three major outcome variables namely; household
savings, food security and household vulnerability to climate change using quasi
experimental approaches. Moreover, in a resource scarce region, establishing the
summative impact of different CSA practices is critical for targeted interven-
tions.

The remainder of this paper is organized as follows: Section 2 presents the
study context while section 3 provides a review of literature on climate change
and smallholder farms. Section 4 explains the estimation strategy and the var-
ious identification tests. Section 5 provides the results and discussions while
Section 6 concludes the paper.

2 Setting the context

The economy of Zimbabwe is mainly agro-based, with 80% of its land classified
as arable, although the bulk of this land is limited by rainfall and availability
of water to irrigate crops and livestock (Moyo and Chambati 2013). Figure 1
shows the agro-ecological zones of the country partitioned into five regions from
the wettest and coolest to the hottest and driest, while the quality of the land
resource declines from natural region (NR) marked I through to NR marked V
(Moyo 2000). Upon independence in 1980, the country inherited a vibrant dual
agricultural system comprising of both a commercial sector, which occupied over
80% of the agricultural land with more than 80% of the population employed in
the smallholder agricultural sector occupying less than 20% of the arable land
(Moyo 2013; Rukuni et al., 2006). The former grew crops for the export mar-
ket to generate the much needed foreign currency, while the latter grew maize
to feed the nation and a limited amount of cash crops (Moyo and Chambati
2013). According to the authors, both sectors complemented each other well.
The smallholder agricultural sector subdivided further into communal farmers,
small-scale commercial farmers and the old resettlement schemes (referred to as
minda mirefu back then) thereby giving four categories of tenure together with
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the white commercial farmers under freehold tenure (Moyo 2013).
With the onset of the land reform programme, code named “the fast track

land reform programme” (FTLRFP), which was highly politicized, more than
70% of the commercial farms were redistributed and given to black Africans to
relieve pressure in communal areas, to advance poverty alleviation and to recruit
a new breed of black Africans into farming. In addition to eroding the sanctity
of the freehold tenure, the onset of the FTLRFP also marked the beginning
of the economic decline in Zimbabwe which persisted up to this period (Moyo
and Chambati 2013). This occurrence brought about new farmers under two
additional tenure categories namely A1 and A2 farmers with little knowledge
of farming and limited resources. Most scholars viewed this move as a negative
technical change as it resulted in subdivisions, tenure insecurity and loss of
productivity (Moyo, 2011). The addition of the new category of farmers strained
the already overburdened extension service which was also crumbling down due
to declining economic conditions after the land reform. In the face of climate
change, it becomes imperative from a policy perspective to investigate how
these different farmers are performing in terms of adaptation and use of CSA
technologies and how the adopted technologies have affected their livelihoods.

3 Literature review

3.1 Determinants of CSA adoption among smallholder farm-

ers

Although the adoption of CSA practices has been shown to have significant influ-
ence on agricultural productivity, household food security, welfare, and reducing
household vulnerability in developing countries, the evidence is still scanty to
inform policy interventions in Sub-Saharan Africa. Climate smart policies have
also been shown to improve decision making, enhance resilience and adaptive ca-
pacity to changing agro-climate conditions and adoption of feasible technologies
and post-harvest practices at farm level (McCarthy et al., 2018). These poli-
cies have proved effective in managing climate risk and potentially mitigating
effects of climate change leading to reduction of poverty, increased food security
and reduced economic vulnerability (Caron et al., 2018; Collins-Sowah 2018).
According to Bhardwaj (2012) and Deuter (2014), biophysical effects and socio-
economic factors are some of the drivers of agricultural responses to high level
climate change. Mayaya et al., (2015) cited inadequate resources, weak techni-
cal and institutional capacity and cost of adoption of technologies as the main
barriers to smallholder household adaptation. In addition, they also cited costly
farm inputs, delays in meteorological information, lack of subsidies, inadequate
credit facilities, poor access to agricultural extension service and agricultural
markets, limited farm size and inadequate labour as the barriers to adaptation
strategies.

At the household level, several studies have tried to tease out the drivers of
adoption of CSA practices as well as their impact on household livelihood using
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a variety of approaches. Using Principal Component Analysis, Wekesa et al.

(2018) found that adoption of CSA practices in Kenya was influenced by gender,
farm size and value of productive assets and with impact of CSA adoption being
greater in households that adopted more CSA practices. Di Falco et al. (2003)
and Cutforth et al. (2001) also showed that adoption of CSA practices like crop
diversification is influenced by land suitability, income level, risk avoidance and
contact with extension officers. In addition, Mukankusi et al. (2015) found yield
to be the major driver of adoption of CSA practices. Distance to market and
nearest extension center, weather variability, education and labour have also
been found to be some of the drivers of the choice of CSA practices adopted
(Teklewood et al., 2020). In Tanzania, Kassie et al. (2013) found that rainfall,
insects and disease shocks, provision of extension services tenure status of plot,
social capital and household assets, influence farmer’s investments in sustainable
agricultural practices. While in Southern Africa, Makate et al. (2019) found
that multiple adoption of innovations is influenced by access to credit, income,
information, education level and household land size. Contrary to these studies,
access to information, inadequate supply of seeds, and perception about the
new cultivars were found to be significant constraints of technology adoption in
Tanzania and Ethiopia (Asfaw et al., 2012).

3.2 Impact of CSA adoption

Globally, a number of studies have tried to tease out the impact of adoption of
CSA practices among smallholder farmers (Tibesigwe et al., 2021; Teklewood et

al., 2020; Asfaw et al., 2016; Mendola 2007). In Bangladesh, Mendola (2007) us-
ing non-parametric propensity score matching analysis and found robust positive
effects of adoption of modern seed technology in improving income and decreas-
ing propensity to fall into poverty. Teklewood et al. (2020) used multinomial
treatment effects framework and found that on controlling for weather variables
at key stages of growth, a portfolio of CSA practices is viewed as a risk insurance
strategy that can increase farmers’ resilience to production risk. The adoption
of modern inputs such as inorganic fertilizers and modern seeds is also positively
associated with crop productivity and income (Asfaw et al., 2016). Tibesigwe
et al. (2021) assessed the impact of multi-season cropping system and found
that plots that adopt multi-season cropping systems produce higher quantities,
earn more crop revenue and are less likely to be affected by rainfall variability
in comparison to plots that engage in single season cropping systems.

Looking at the CSA practices independently, Tesfaye et al. (2021) used
endogenous switching regression model to handle selectivity issues and farmer
heterogeneity in conservation agriculture choice. They found that conservation
agriculture practices namely; minimum tillage and cereal legume and a portfolio
of the two can accelerate efforts to reduce rural poverty and improve climate
risk management.

In Tanzania and Ethiopia, Asfaw et al. (2012) after addressing selectivity
issues, found that adoption of improved agricultural technologies had positive
impact on household welfare, while a study by Bezu et al. (2014) in Malawi
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found that adoption of improved maize has greater impact on welfare of poorer
households. Using endogenous switching regression model and control function
approach, Amado et al. (2020) found that adoption of CSA practices led to a
53% increase in maize yield in Malawi. In China, Liang et al. (2021) found that
adoption of both adaptive and mitigatory CSA practices increases rice yield
and rice net income. However, while exploring the impact of CSA adoption on
nutritional outcomes in Ethiopia, Teklewold (2019) found that farmers adopt-
ing a combination of CSA practices were more nutritionally secure than those
adopting a single practice.

While assessing the impact of adoption of CSA practices on multidimensional
poverty, Habtewold et al. (2021) found significantly higher impact in several de-
prived households. The impact of adoption of CSA practices was found to be
through increased income or consumption via the non-food expenditure path-
way. An assessment of the impact of CSA practices on livelihood outcomes
by Ogada et al. (2020) using matching methods and simultaneous equations
revealed that adoption of multiple stress tolerant crops improves household in-
come which in turn improve household asset accumulation. They also found
that adoption of improved livestock breeds significantly reduces household in-
come and attributed this to the possibility of income being invested in the form
of livestock rather than household assets a more resilient measure compared to
investment in domestic household assets.

Another study by Tong et al. (2019) found that crop rotation and zero tillage
improves technical efficiency, while crop insurance has no significant effect on
technical efficiency. In the southern Africa region, Makate et al. (2019) found
that concurrent adoption of conservation agriculture, stress adapted legume va-
rieties and drought tolerant maize have greater dividends on productivity and
income than when considered individually. They, however, found that the im-
pact of multiple adoption of practices are heterogeneous across geographical
regions and by gender. Fentie et al. (2019) assessed the impact of row planting
as a climate smart agriculture practice on welfare of rural household in Ethiopia
using Propensity Score Matching and semi parametric local instrumental vari-
able version of the generalized Roy model. They found that adoption of row
planting technology has a positive and significant impact on per capita consump-
tion and on crop income per hectare. Using multinomial endogenous treatment
effects model to assess the determinants of adoption of sustainable agricultural
practices, Manda et al. (2016) found that household and plot-level characteris-
tics influence a household’s adoption decisions. However, their findings showed
that adoption of a combination of sustainable agricultural practices raises both
maize yields and income of smallholder farmers. In support of findings by Manda
et al. (2016), Abdallah et al. (2021), also found that adoption of sustainable
agriculture practices as a package rather than a single practice enables farm
households to derive significant welfare benefits.

An overview of the literature revealed significant differences in terms of ap-
plied methodology, definition of variables and contextual factors. Previous stud-
ies have assessed the impact of adoption of single CSA practices on welfare (Tong
et al., 2019; Ogada et al., 2020; Fentie et al., 2019). However, farmers may adopt
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a portfolio of CSA practices (Teklewold et al., 2019; Makate et al., 2019; Amadu
et al., 2020) to maximize household welfare and agricultural output. In addi-
tion, most of these studies have focused on single outcome mainly food security
or welfare measured by different methods that may be prone to measurement
errors. We extend this literature by assessing the impact of adopting a port-
folio of CSA practices on a vector of outcomes linked to household livelihoods,
namely food security, household vulnerability and household savings. The study
contributes to the literature by first analyzing the impact of employing adaptive
and mitigatory CSA practices on the outcome variables and further explore the
potential synergies between adaptation and mitigation practices.

3.3 Climate Smart Agriculture Impact pathways

CSA aims to contribute to a climate resilient nation that is food and nutrition
secure and that has equitable access to livelihood opportunities for all, while im-
proving natural resource systems and ecosystem services (FAO 2013a). This is
done by building capacity of farmers to adapt and prosper in the face of shocks
and long-term stresses. The principal goal of CSA is identified as food security
and development (FAO 2013a; Lipper et al., 2014); while productivity, adapta-
tion, and mitigation are identified as the three interlinked pillars necessary for
achieving this goal. The adoption of CSA practices is expected to sustainably
increase agricultural productivity and incomes from crops, livestock and fish,
without having a negative impact on the environment (Lipper et al., 2014).
This, in turn, is believed to increase agricultural productivity, increase food and
nutritional security, reduce household vulnerability, increase household income
and savings through sale of agricultural produce, and increase household adap-
tive capacity and resilience to both idiosyncratic and covariate shocks. Contrary
to conventional agricultural development, CSA systematically integrates climate
change into the planning and development of sustainable agricultural systems
(Lipper et al., 2014). Figure 1 shows the envisaged impact pathways.

In addition, wherever and whenever possible, CSA should help to reduce green-
house gas (GHG) emissions. This implies that we avoid deforestation from
agriculture, reduce emissions for each calorie of food and fuel that we produce
and that we manage soils and trees in ways that maximize their potential to
acts as carbon sinks and absorb CO2 from the atmosphere. To achieve the
objective of CSA, crop management entails the use of improved storage and
processing techniques, mulching, composting and organic fertilizer, intercrop-
ping, crop rotation, new crop varieties and crop diversification among others.
It is also envisaged that adopting more CSA practices leads to better national
food security and attainment of development goals.

4 Estimation Strategies

The paper employs a mix of econometric techniques to investigate the deter-
minants of smallholder farmer’s adoption of CSA practices and the impact of
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CSA practices on household livelihood including food security, vulnerability,
and savings. The standard probit model is used to identify the determinants of
household adoption of CSA practices (Wooldridge 2010).

4.1 Impact of CSA adoption

4.2 Theoretical framework

CSA adoption is grounded in the theory of technology adoption. The theory is
well established having its roots from the early days of when researchers mod-
elled the farmers behavior based on the cost-benefit analysis framework (also
referred to as the rational choice theory) which assumes rationality in under-
taking an action. As we will discuss later, CSA adoption improves food security
and nutrition through increased agricultural productivity and farm incomes.
The basic framework used in microeconomics and agricultural production eco-
nomics are based on the farmer’s profit maximization behavior (Varian 1992;
Debertin 2012), i.e., assuming a single input (x) and single output (y = f (x))
the farmer’s profit function can be written as follows:

π(pw) = max pf (x)−w??

where the output and input prices are p and w respectively. This framework
can be extended to a model with more than one output and inputs assuming
a vector of outputs and inputs (Y jt Xit) and prices (pit, ωit). Letting xit be
one element of the vector of inputs Xit, the first-order condition of the farmer’s
maximization would be:

pit
∂Y

j
t

∂xit
= ωit

i.e., a farmer chooses input decisions based on the marginal value product. Es-
sentially, adopting a CSA practice can potentially change the marginal product
curve of a farmer’s land. This means that CSA adoption can either change the
slope or change the intercept of the marginal product curve. There are other
important pathways through CSA adoption either improves food and nutrition
or increases farm productivity and incomes, i.e., through a decrease in produc-
tion costs and mitigation of production risk due to crop failure. Thus, CSA
adoption is also likely to affect the marginal value product if it directly leads to
changes in quantity of inputs demanded.

However, there are short comings of the rational choice model, and because
of these limitations different theories exist to explain human behavior such as
technology adoption. Rogers (1995) popularized the five stages of the adoption
cycle referred to as innovators, early adopters, early majority, late majority and
laggards. Several theories also emerged at the same time to explain how individ-
ual make adoption decisions such as the Theory of Reasoned Action (Fishbein
and Ajzen 1975), Theory of Planned Behaviour (Ajzen 1985), different versions
of Technology Acceptance Model (Davis et al., 1989) and Bounded Rationality
(Esther-Marjam 2017) which addresses the discrepancy between the assumed
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perfect rationality of human behavior and the reality of human cognition. The
theory of Bounded Rationality assumes that humans do not take a full cost-
benefit analysis to determine the optimal decisions because people’s decisions
are limited by variables such as information. These different frameworks help
us to identify other variables that affect the farmer’s decision.

4.2.1 Econometric framework

The econometric framework is grounded on Roy (1951) occupational choice
model which assumes that smallholder farmers adopt CSA practices to max-
imize benefits and utility and thus assignment to treatment is non-random. For
example, define Vij as the utility of household i=1 2...N in treatment regime
j= {0, 1}, with 1 representing adoption of CSA technologies and 0 otherwise
and hence Di = 1 if Vi1 > Vi0. Yij is a vector of potential outcomes such as
household savings (total value of livestock holding), household food security and
household vulnerability. Therefore, Yi1is thepotential outcome for adopters of
CSA practices and Yi0 is the potential outcome for non-adopters. The difference
between Yi1 and Yi0 differential impact on the potential outcome.

Rubin (1973) posits that program impact is the difference between the ob-
served and the counterfactual outcome. The main challenge is that counterfac-
tual is not observable, and an individual cannot be in both states at the same
time. A quasi-experimental approach is, therefore, more appropriate for iden-
tifying the counterfactual given that adoption of CSA practices is non-random.
Controlling for adoption decision is therefore important to tease out the impact
of CSA adoption and also taking cognizant of the fact that potential outcomes
for CSA adopters can be due to unobserved heterogeneity. Failure to distinguish
between the causal effects of adoption of CSA practices and effect of unobserved
heterogeneity may lead to misleading conclusion and policy implication. Farm-
ers may also self-select themselves to adopt CSA practices based on education
level, access to information and income levels among other factors. The adoption
of CSA practices is also potentially endogenous to the outcome variables.

This paper, therefore, employed a range of econometric approaches namely,
the Inverse Probability Weighting (IPW) regression model to handle selection
issues and the instrumental variable regression model to handle the endogeneity
issues.

4.2.2 Inverse Probability Weighting Regression Model

Assuming that the distribution of the outcomes is independent of treatment
i.e. adoption of CSA technology, given a vector of covariates, a propensity
score matching estimator for the average treatment effects on the treated can
be estimated. The intention of matching is to create a control group of non-
CSA adopters that is similar as possible as the adopters of CSA technologies
although the groups may be significantly different. The inverse probability
weights mimic the matching intuition through reweighting to make the adopters
and non-adopters distribution look as similar as possible. However, identifica-
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tion of average effect of adoption of CSA within this framework requires both
strict ignorability of treatment, (Y1i, Y01⊥DiP (Xi)) and the propensity score
overlap, 0 < P (Xi) < 1 (Dehejia et al., 2002; Rosenbaum et al., 1983). Another
assumption is the common support in which similar individuals have positive
probability of being both adopters and non-adopters of CSA technologies (Heck-
mann et al., 1999). The IPW regression model where the probability is derived
from a logit model in line with the propensity scores is specified as follows:

Prob (Di = 1|Xi) = ∧(XΓ)

Farm, distance to the market and household socioeconomic and demographic
characteristics are other controls included in the model. The IPW regression
model was applied, where the propensity scores are used to reweight the data.
In the model, propensity scores are first estimated to create the weights and
define overlaps between comparison and control groups and then the weighted
regression is estimated (Cameron et al., 2005; Wooldridge, 2003).

The estimated model is a standard treatment effects regression, wherein the
outcome variable of interest is regressed on the treatment together with controls
from the propensity score regression presented in equation (1) (Cameron et al.,

2005; Wooldridge 2003; Dehejia et al., 2002; Heckmann et al., 1999; Rosenbaum
et al., 1983). This is done to control for any lingering covariate imbalance that
could influence the estimates.

4.2.3 Instrumental Variable Regression Model

The standard ordinary least squares (OLS) regression model could be appropri-
ate if the adoption of the CSA practices was random. Thus, OLS model could
yield consistent estimates, if the adoption of CSA practices is independent of the
error term or of unobservable covariates that impact on the outcome variables.
However, the adoption of CSA practices is likely dependent on the error term
since CSA practices are likely conditional on unobservable covariates that are
correlated with the error term (e.g. inert ability), a source of endogeneity of
CSA adoption. The identification of the causal effect through nonlinear func-
tional forms is however plausible, but more robust estimates can be archived
through non-trivial exclusion restriction or instrumental variable (Heckman and
Navarro-Lazano, 2004; Heckman Vytlacil, 2005). This requires obtaining vari-
ables that are correlated with the choice of CSA practices but are, conditional
on exogenous variables in the outcome equation. In this paper, we adopt the use
of long-term historical climate variables that capture rainfall and temperature
patterns as identifying instruments (Asfaw et al., 2016). The motivation for
the choice of this instrument is that as farmers form expectations on climatic
conditions of their area based on experiences, the instruments are assumed not
to affect the outcome variables (food security, household vulnerability and sav-
ings (value of livestock holding)) directly, but only through the choice of CSA
practices.
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4.2.4 The Data

Data for the analysis is based on the agricultural productivity module of the
poverty, income, consumption and expenditure survey (2017) conducted by the
Ministry of Agriculture, Mechanization and Irrigation Development (MAMID).
The data we use covers 8 provinces in Zimbabwe namely: Manicaland; Mashona-
land Central; Mashonaland East; Mashonaland West; Matabeleland North;
Matabeleland South; Midlands; and Masvingo. Harare and Bulawayo which are
more of cities with limited agricultural activities are excluded. The provinces
reflect different agro-ecological settings and are characterized with varying topol-
ogy and altitude as well as varied temperature and rainfall patterns and farmers
practice mixed farming systems. The cross-sectional data provide information
on a representative sample of 14,585 households. It combines household level
information on both children and adults living within households. However, this
paper considers information given by the adult household head. The household
survey involved collection of data on household characteristics, including, assets,
agricultural produce, livestock ownership, agricultural practices, frequency, and
method of land preparation as well as sociodemographic characteristics. Infor-
mation was also gathered on land topography soil type, quality, and details on
crop management among others.

Temperature and rainfall data are obtained from the climatic data provided
by the Climatic Research Unit (CRU) at the University of East Anglia (Harris
et al., 2020). The climate data combines data from more than 4000 weather
stations around the world and satellite data, to get high-resolution monthly
estimates of temperature and rainfall over the period 1901-2020. The advan-
tage of this database is that it is provided at fine spatial resolution (0.5x0.5
degree) grids which allows us to aggregate the data to different geographical
levels. Using the provincial shapefile for Zimbabwe, we extract monthly aver-
age temperature and rainfall data between 2011 and 2020 for each of the eight
provinces used. We used ten-year monthly average rainfall and for temperature,
computed the coefficient of variation since variance in temperature in the short
term is just as important as the mean temperature. The paper assessed 9 CSA
practices identified from the literature namely: irrigation; water harvesting; bor-
der trees, erosion control structure; cover crops; organic manure; intercropping;
zero tillage; and fallow farming.

The paper constructed an index for adopters of CSA practices using princi-
pal component analysis (PCA). The PCA was preferred to the additive index
because it produces a more effective measure by recovering the underlying latent
variable (Darnell, 1994). The Kaiser-Meyer Olkin (KMO) measure of sampling
adequacy revealed that CSA practices had an overall KMOmeasure of 0.5 allow-
ing for the use of PCA. The PCA results revealed that the first two components
had eigenvalues greater than one - dominating in terms of eigenvalues and pro-
portion of variance. The first component also makes more economic sense since
none of the coefficients was negative. The first component vector also contains
positive weights for all the CSA practices an evidence of aggregate variation as
a result of variation in adoption levels by households (Fujiie et al., 2005). We
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therefore, classified households based on PCA scores with PCA scores greater
than zero as adopters of CSA and those with less than or equal to zero as
non-adopters. The Household Dietary Diversity index (HDD)1 a proxy for food
security was constructed through an additive index of dummies whether house-
hold ate sadza, potatoes, beans, fruits, beef, milk in the last 24 hours. On the
other hand, household vulnerability index was also constructed as an additive
index obtained by summing up the dummies whether the household was worried
about food, ate few foods, ate less, skipped meal, missed food or was out of food
among others. The other controls adopted in the study were selected based on
related literature. This helped identify a comprehensive set of controls that are
known to affect smallholder farmer decision to adopt CSA practices (see Makate
et al. 2019; Asfaw et al. 2012; Teklewold 2019; Ogada et al. 2020; Fentie et al.
2019; Bezu et al. 2014; Kassie et al. 2013; Liang et al. 2021).

5 Empirical Results and Discussion

5.1 Descriptive statistics

Table 1 presents summary statistics and description of variables for the full
sample, adopters, and non-adopters of CSA practices. The results revealed
that the average household dietary diversity index was approximately 8 out
of a maximum of 12 for whole sample as well as the disaggregated sample of
CSA technologies. The vulnerability index was slightly lower for adopters than
it is for non-adopters showing that adopters of CSA practices were less vul-
nerable compared to non-adopters. However, the household savings (value of
livestock holding) was lower for adopters than non-adopters. This shows that
most adopters of CSA practice could be more involved in crop farming than
livestock farming which dominates in much drier regions where the potential to
grow crops is limited by rainfall. Overall, the statistics also revealed that the
ownership of livestock for the whole sample was on average 14% of the total
sample. Non-adopters of CSA technologies on average owned more livestock
than adopters of CSA explaining the low value of livestock holding for adopters.

A summary of adoption of CSA practices by gender of household head and
province is presented in Table 2 and Table 3 respectively. Table 2 shows that use
of erosion control, border trees, and intercropping were the predominant CSA
practices with male headed households being the greatest adopters of these
practices compared to their female headed households. This could be because
most CSA practices require physical energy and more household income which
translate into increased on-farm financial investments common in male headed
households (Kassie et al., 2013). However, as expected female headed house-
holds dominated the adoption of intercropping. This is because most agricul-
tural practices are done by women and intercropping is less physically intensive

1Household dietary diversity score is defined as the number of different foods/food groups
consumed by households over a given period. It is derived by grouping all food items consumed
by a household over a a period of 24 hours into 12 food groups (Swindale and Bilinsky, 2006)
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and also synonymous with female headed households as they strive to maximize
out of the small parcel of land they may own (Manda et al., 2016).

Speaking to the topography, vegetation and aridity of the landscapes, the dis-
tribution of CSA adoption by region presented in Table A1 in the annex revealed
that Manicaland dominated adoption of border trees followed by Matabeleland
North, Mashonaland West and Midlands in that order. Erosion control struc-
tures were predominant in Masvingo, Manicaland, Mashonaland central and
Mashonaland East. Intercropping was also found to be predominant in Mata-
beleland South and Masvingo.

5.2 Test of significant differences between adopters and

non-adopters of CSA practices

Table 4 presents the results of the mean difference in household characteristics
and livelihoods of adopters and non-adopters of CSA practices based on the stu-
dent t-test statistic. The variables include the three-outcome variables, namely,
food security (HDD), household vulnerability, savings (value of livestock hold-
ing) other controls namely: human capital, physical capital, access to services
constraints and climatic variables among others.

The results show that there was significant mean difference in HDD and
value of livestock holding between adopters and non-adopters of CSA practices.
As expected, CSA adopters have high dietary diversity index and a low vul-
nerability index compared to non-adopters. This result is not surprising given
the diversity of income generating activities and food sources under the former
category, which might also help to reduce vulnerability (Manda et al., 2016).
However, non-adopter had high value of livestock holding than non-adopters and
this could be because most non-adopters owned more livestock than adopters
of CSA practices since they are located in drier regions where crop production
is less viable. Overall, the significant mean differences for some covariates sug-
gest that the observed outcomes for non-CSA adopters may not provide good
counterfactual for adopters. This implies that estimation assuming random
treatment assignment would produce biased results calling for an alternative
impact evaluation approach.

5.3 Who adopts CSA practices?

Table 5 presents coefficients and marginal effects estimates of CSA from the
probit model. The study revealed that the adoption of CSA practices increases
with age until age 56 years, whereby further increase in age limits physical
strength and hence the lower likelihood of adoption of CSA practices. This shows
that the physical energy of youths and their knowledge accumulation increases
the likelihood of adopting CSA practices (Martey et al., 2021). Smallholder
farmers are more likely to adopt CSA practices where they have forest soil or
loam soil compared to other soils like sand, clay etc. This result confirms the
result in Table 3 that Manicaland dominated adoption of border trees as the
province has forest soil.
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The results also revealed that households that received residential input sub-
sidy or vulnerable input subsidy are less likely to adopt CSA practices. Rukuni
et al. (2006) likened this behaviour of the vulnerable group to the donor depen-
dence syndrome and could be much pronounced in developing countries than
previously thought. On the other hand, households that hired labour and have
rights to sell their land were more likely to adopt CSA practices. Since some
of the CSA technologies are labour and capital intensive, the relatively wealthy
households can afford to hire extra labour. Interestingly, those who own land
were also found to be less likely to adopt CSA practices compared to those who
do not own land. Barrows and Roth (1990) found that in West and East African
countries land ownership pushes one to work harder so that they can acquire
their own assets such as land to be self-reliant. Similar reasoning could be ap-
plied in the Zimbabwean case under a communal setup or the newly resettled
farmers because of the tenure insecurity.

Experience of erosion problem was found to positively influence CSA adop-
tion decisions of smallholder households. There is plenty of evidence in the
literature in support of the fact that soil erosion is one of the main factors influ-
encing the adoption of CSA practices as it directly and quickly translates into
reduced yield if not taken care off immediately (Makate et al., 2019; Manda et

al., 2016; Kassie et al., 2013; Mendola 2007). Climatic variables were found to
influence adoption of CSA practices. These results support findings by Di Falco
et al. (2003); Cutforth et al. (2001); Kassie et al. (2013); Mayaya et al. (2015);
Manda et al. (2016); Wekesa et al. (2018); Makate et al. (2019) and Teklewood
et al. (2020) among others. In particular, the likelihood of adopting CSA prac-
tices increases with rainfall and decreases with increase in temperature. This
confirms the idea that households are more likely to adopt CSA practices in
wetter regions and less likely to do so in drier climates as they can easily switch
from crop cultivation to livestock production (Kassie et al., 2013). Further, in
terms of gender, the results revealed that, Male headed households that owned
plots, received vulnerable input subsidy, had sell rights to their land and also
received residential input subsidy were more likely to adopt a portfolio of CSA
practices compared to their female counterparts. As already alluded to, invest-
ment in some of the CSA technologies could be labour and/or capital intensive
which usually falls in the domain of employed males (Manda et al., 2016).

5.4 Impact of CSA adoption on household livelihood

As previously stated, if treatment assignment i.e., adoption of CSA practices
was completely random, then a simple ordinary least square regression model
or a comparison of the mean difference in the outcomes would suffice. However,
since adoption of CSA practices is voluntary and a household could self-select
into adopting CSA practices based on maybe level of education or access to
information, a random treatment assignment may not apply in this case. We
therefore, adopted the IPW regression model to address the selectivity issues.

Before discussing the results, the underlying premises of IPW i.e., confound-
edness and overlap must be met. The results depicted sufficient overlap although
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there are few propensity scores closer to either one or zero. This implies that
the regions too close to zero or one will not be within the common support. We
also assessed the balance although we do not report them here. The primary
IPW estimates are presented in Table 6, 7, and 8.

The results in Table 6, 7 and 8 could be sensitive to inclusion of additional
covariates. The results show that there is evidence of treatment effect in agree-
ment with the mean differences in Table 4. Despite the sensitivity to choice
of counterfactual, the direction as well as size of the program impacts may not
be particularly sensitive to the inclusion of a broader set of covariates. The
results confirmed that the impact of CSA adoption was significant and posi-
tive on household dietary diversity i.e., food security but significantly reduced
household vulnerability and household savings as proxied by value of livestock
holding. The results were consistent even when we considered male and female
headed households separately except for the household vulnerability as shown
in Table 7 and Table 8 for male and female headed households, respectively.

In addition, since adoption of CSA practices could be potentially endogenous
to food security, household vulnerability and value of livestock holding, we first
tested for endogeneity of CSA adoption. The control function approach2 was
employed to test for endogeneity. The approach was conducted in two phases.
In the first phase, the endogenous variable (CSA adoption) was regressed on
the instrumental variable Coefficient of variation of rainfall and temperature
and the other explanatory variables and the predicted residuals saved.3 In
the second phase, the three outcome variables were regressed on the endoge-
nous variables (CSA adoption), other explanatory variables and the residuals
(Wooldridge 2010). The test revealed that CSA adoption was not endogenous to
Household dietary diversity as the null hypothesis of exogeneity is not rejected
with a p-value of 0.789. However, the null hypothesis of exogeneity was rejected
for value of livestock holding and household vulnerability index with a p-value of
0.025 and 0.000 showing that adoption of CSA practices is endogenous to value
of livestock holding and household vulnerability index. This implies that we
cannot proceed to estimate a standard OLS model for value of livestock holding
and household vulnerability index. Due to evidence of endogeneity of adoption
of CSA practices to livestock holding and vulnerability index we proceeded to
estimate an instrumental variable regression model to address the endogeneity
concerns. The results were obtained using the ivreg2 Stata command for an
extended instrumental variable regression model are presented in Table 9.

Since adoption of CSA, practices was not endogenous to household food se-
curity i.e., HDD, but was found to be endogenous to household livestock value
and household vulnerability index, the discussion henceforth will be based on

2The approach is almost similar to the 2SLS approach but the only difference is that it
allows for testing of endogeneity of CSA adoption. However, it hinges on the assumption of
exogeneity of the instrument.

3The proportion of predicted probabilities outside the unit interval was computed. Finding
only 1.3 % of the predicted residuals were outside the unit interval, the Linear probability
model was preferred over the probit or logit model. This is because LPM would still produce
consistent and unbiased estimates (Horrace &Oaxaca, 2006). The LPM model was also found
to be significant with an F-value 32.94 and a p-value of 0.000.
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the OLS model estimates for HDD (column 1) and IV model estimates for
value of livestock holding and household vulnerability index in columns (3) and
(4) respectively. Conditioned on a set of covariates, the results revealed that,
adoption of CSA practices has a positive effect on household food security as re-
vealed by the OLS model, while adoption of CSA practices has a negative effect
on value of livestock holding and household vulnerability index. The results re-
vealed that adopters of CSA practices experience increased HDD by 0.21 points
holding other factors constant. On the other hand, CSA adopters were found
to experience reduction in vulnerability by 11 points compared to non-adopters.
However, CSA adopters experienced reduction in value of livestock holding by
about US $208 compared to non-adopters. Although we expected the adoption
of CSA practices to have a positive impact on household savings as proxied
by value of livestock holding since most rural smallholder farmers save through
purchase of livestock, this could have been because investment on some CSA
practices could be costly therefore households may be forced to shed off some
livestock to buy say inorganic manure or build gabions or invest in irrigation
infrastructure. This was also evident from the descriptive statistics since CSA
adopters had very few livestock.

The results of the OLS and IV models are therefore in tandem with results
of the IPW models showing that CSA adoption has significant impact on HDD,
value of livestock holding and household vulnerability index. It, therefore, im-
plies that CSA adopters were well off economically than non-adopters of CSA
practices. The evidence of reduction in household vulnerability implies that ide-
ally adopters of CSA practices had improved welfare as they could now easily
be able to meet their daily livelihood needs. The results support findings by
Asfaw et al. (2012); Bezu et al. (2014); Teklewold (2019); Fentie et al. (2019);
Wekesa et al. (2020); Ogada et al. (2020); Abdallah et al. (2021); Tesfaye et al.
(2021); and Habtewold et al. (2021) among others who found adoption of CSA
practices to have positive impact on household welfare. Taking a closer look at
both models, the impact analysis results agree with each other after address-
ing the selectivity issues in the IPW regression model and after taking care of
endogeneity using IV estimation. Previous theoretical and empirical accounts
also suggest a positive relationship between the adoption CSA practices and
food security (Amadu et al., 2020; Fentie and Beyene 2019; Asfaw et al., 2012),
while a negative relationship is established between CSA adoption with either
household vulnerability (Habtewold 2021; Makate et al., 2019). However, the
evidence in Sub-Saharan Africa is still shaky by the fact that adoption of some
CSA practices is not widespread as smallholder farmers are still experimenting
with the technologies (McCarthy et al., 2018; Collins-Sowah 2018). According
to the theory, the process of adoption has several stages starting from the time
the farmer receives the information about a new technology, followed by ob-
serving the performance of other farmers using the technology in question as
a means of consolidating more information, then learning on a small scale and
finally deciding to adopt (Montes de Oca Munguia et al., 2021; 2020).

In addition to the time element, the decision-making process involves an
element of risk or uncertainty and weighing the real benefit and costs of adopting
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CSA practices under the rationality assumption, while the benefit and cost
functions are made up of both observable and latent variables (Wauters and
Mathijs 2014). The cost of adopting a CSA can be greater than the benefits in
the short-run considering real costs, the opportunity costs of land (if land can
be used for different purposes) and labour (for labour intensive technologies),
and other variables that are unobservable, while in the long-run the benefits
can be greater than the costs. Therefore, the length of time that is required by
farmers to realize the benefits from adopting CSA practices might too long for
certain technologies which also brings in the issue of patience (Liu et al. 2018).
In the literature, the behaviour of peasant farmers is assumed to be myopic or
short sighted and impatient (Wauters and Mathijs 2014).

The negative relationship between CSA adoption and household savings as
proxied by livestock holdings was not expected which makes this result interest-
ing. Manure management mitigation options have a high potential in landless
systems but a much more limited potential in land-based systems (FAO 2013).
Since most non-adopters were livestock farmers in arid regions, another plau-
sible explanation could be that information on adoption of CSA practices in
livestock management were not collected during the survey. Maybe the results
could be different if we controlled information on adoption of CSA practices
in livestock management. The literature from the developed world reveal that
climate-smart options are available for land-based systems depending mainly
on grazing, e.g., reductions in methane gas emissions through improved feed di-
gestibility and carbon dioxide removals through soil carbon sequestration (FAO
2013). However, the applicability of these options to low-input systems with
infrequent human intervention in the context of communal farmers in devel-
oping countries tends to be quite limited because they require a high level of
management (FAO 2010). Adoption of CSA practices in livestock management
is very common in wetter regions where households own a limited amount of
land that should be optimized between crop cultivation and livestock production
for sustainability (FAO 2013). Previous studies observed CSA practices asso-
ciated with livestock management such as grazing and pasture management
(i.e., production of fodder crops as part of agroforestry practices and paddock
for rotational grazing). There was also significant heterogeneity across gender.
The study revealed significant positive impact on food security and household
vulnerability for male headed households who owned plots, Hadsell rights and
received vulnerable input subsidy.

6 Conclusion

The study sought to determine the drivers of adoption of CSA practices by
smallholder farmers in Zimbabwe and the subsequent impact of adoption of
CSA practices on food security, household savings, and household vulnerabil-
ity. The study found that male headed households who own plots, have sell
rights received input subsidies, age, slope of land, soil quality, type of soil, tree
loss experience, input subsidy programmes, whether a household hired labour,
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land ownership, experience of soil erosion and climatic variables such as rainfall
and temperature were significant determinants of household adoption decisions.
However, the study revealed that CSA adoption had positive impact on food se-
curity and reduced household vulnerability but a negative impact on household
savings as proxied by value of livestock holding on average. In terms of gender,
adoption of CSA was found to have a positive impact on household food security
and a negative impact on household savings for both male and female headed
households. However, adoption of CSA practices was found to reduce household
vulnerability for female headed households but increase vulnerability for male
headed households. It can therefore be concluded that on average, adoption of
CSA practices is economically and socially beneficial for smallholder farmers. It
is therefore imperative for the provincial governments to strive to increase re-
sources towards supporting CSA to greatly impact on food security by boosting
crop yields in the face of increasing climate uncertainty and extreme weather
shocks. The results also confirm the potential role of adoption of climate smart
technologies in improving household food security and reducing vulnerability.

In terms of policy recommendations, the study findings point to the need for
promotion of CSA practices aimed at livestock management due to increased
income because of increased yields from adoption of CSA practices. Most rural
households often invest in livestock assets given an option of which they can
liquidate to bridge household income gaps on a rainy day. This is a more
resilient measure compared to investment in domestic household assets. The
positive effects of CSA adoption on food security confirm the essence of in-
creasing capacity enhancing activities in agricultural development projects, and
design mechanisms to eliminate barriers to adoption of CSA practices among
smallholder farmers. Scaling up of CSA technologies would contribute to farm-
ers’ resilience against the adverse effects of climate change through enhancing
food security and reduction of household vulnerability. To enhance agricultural
productivity, policy and institutional efforts should strike at reducing resource
constraints that inhibit farmer capacity to adopt complementary climate smart
agricultural packages such as conservation agriculture, drought tolerant maize
and improved legume varieties must be gender sensitive and context specific.
More extension work in the form of information provisioning particularly to the
new farmers, trial or demonstration plots, look and learn tours are needed to
demonstrate the benefits of CSA practices.
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Table 1: Summary Statistics 

 Whole Sample Adopters Non Adopters 

Variable N mean Sd
1
 N Mean Sd N mean Sd 

Household Dietary Diversity 14,585 8.20 1.45 4,007 8.35 1.40 10,578 8.14 1.46 

Vulnerability Index 14,585 4.14 3.75 4,007 4.07 3.69 10,578 4.17 3.77 

Amount of Tree Sale 14,585 1.19 15.9 4,007 1.41 21.8 10,578 1.09 13.0 

Value of Livestock  14,585 46.7 249.1 4,007 33.6 187.0 10,578 51.7 268.8 

Animal Expenses 14585 2.29 32.8 4,007 3.01 44.8 10,578 2.01 26.9 

Household head is male  14,585 0.59 0.49 4,007 0.60 0.49 10,578 0.59 0.49 

Age of household head 14,585 48.3 14.4 4,007 49.8 14.0 10,578 47.7 14.5 

Household Graze Livestock 14,585 0.65 0.48 4,007 0.61 0.49 10,578 0.66 0.47 

Pasture Land size 14,585 499.5 4400 4,007 418.2 5287 10,578 530.2 4013 

Years plot left fallow 14,585 0.21 0.80 4,007 0.05 0.26 10,578 0.27 0.92 

No of household members on plot 14,585 2.15 1.37 4,007 2.09 1.41 10,578 2.18 1.36 

Household hired labor 14,585 0.12 0.33 4,007 0.15 0.36 10,578 0.11 0.31 

Household planted on time 14,585 0.72 0.45 4,007 0.78 0.42 10,578 0.69 0.46 

Household used hybrid seeds 14,585 2.13 0.99 4,007 2.15 0.99 10,578 2.12 0.99 

Household used certified seed 14,585 0.41 0.49 4,007 0.41 0.49 10,578 0.42 0.49 

Household used free seeds 14,585 0.25 0.43 4,007 0.24 0.43 10,578 0.25 0.43 

Distance to seed market 14,585 10.2 35.7 4,007 9.20 31.8 10,578 10.5 37.0 

Number of trees 14,585 196.1 838.5 4,007 172.2 639.3 10,578 205.1 902.4 

Household lost trees 14,585 0.04 0.19 4,007 0.02 0.15 10,578 0.04 0.20 

Household owned animals 14,585 0.14 0.35 4,007 0.13 0.33 10,578 0.15 0.35 

Household dipped animals 14,585 0.062 0.24 4,007 0.06 0.24 10,578 0.06 0.24 

No of Plots  14,585 2.90 2.50 4,007 2.98 2.77 10,578 2.87 2.40 

Household own land document 14,585 0.21 0.41 4,007 0.22 0.41 10,578 0.20 0.40 

Household own plot 14,585 0.28 0.45 4,007 0.26 0.44 10,578 0.29 0.45 

Household own land 14,585 0.01 0.11 4,007 0.01 0.09 10,578 0.01 0.12 

Household have sell rights 14,585 0.005 0.07 4,007 0.01 0.09 10,578 0.003 0.06 

Temperature 14,585 21.7 0.91 4,007 21.7 0.94 10,578 21.7 0.90 

Rainfall 14,585 55.3 10.2 4,007 56.5 9.44 10,578 54.9 10.5 

CV
2
 of Rainfall 14,585 126.7 9.85 4,007 127.6 9.52 10,578 126.4 9.95 

CV of Temp 14,585 14.0 1.20 4,007 13.8 1.06 10,578 14.0 1.24 

Distance to Agric Market 14,585 0.02 0.95 4,007 0.02 0.392 10,578 0.02 1.09 

Household received Residential Input  14,585 0.06 0.25 4,007 0.05 0.23 10,578 0.07 0.25 

Household received Vulnerable input  14,585 0.03 0.18 4,007 0.03 0.17 10,578 0.03 0.18 

Household experienced erosion 

Problem 

14,585 0.32 0.47 4007 0.40 0.49 10,578 0.29 0.45 

 

Table 2: Distribution of CSA practices by Gender 

 Total Female Male 

Variable N mean Sd N mean Sd N mean Sd 

Irrigation 14585 0.047 0.212 5925 0.041 0.198 8660 0.052 0.221 

Water Harvesting 14585 0.023 0.151 5925 0.017 0.130 8660 0.028 0.163 

Border Trees 14585 0.382 0.486 5925 0.356 0.479 8660 0.400 0.490 

Erosion Control 14585 0.389 0.488 5925 0.366 0.482 8660 0.405 0.491 

Cover Crop 14585 0.043 0.203 5925 0.037 0.188 8660 0.047 0.212 

Organic Manure 14585 0.233 0.507 5925 0.249 0.519 8660 0.222 0.498 

Intercropping 14585 0.276 0.447 5925 0.319 0.466 8660 0.246 0.431 

Zero Tillage 14585 0.035 0.184 5925 0.037 0.188 8660 0.034 0.182 

Fallow Farm 14585 0.099 0.298 5925 0.100 0.299 8660 0.098 0.298 

                                                           
1
 Standard deviation 

2
 Coefficient of variation 
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Table 4: Comparison between adopters and non-adopters of CSA practices 

Variable  CSA Adopters Non-CSA adopters Mean difference 

Mean  s.e Mean  s.e Mean  s.e 

Household Dietary Diversity 8.348*** 0.022 8.143*** 0.014 0.205*** 0.027 

Vulnerability Index 4.065*** 0.058 4.171*** 0.037 0.105 0.070 

Amount of Tree Sale 1.333*** 0.086 1.097*** 0.126 -0.235 0.202 

Value of Livestock  33.614*** 2.953 51.680*** 2.613 18.066*** 4.619 

Animal Expenses 3.013*** 0.708 2.013*** 0.261 -0.999 0.608 

Household head is male  0.603*** 0.008 0.590*** 0.005 -0.013 0.009 

Age of household head 49.793*** 0.221 47.717*** 0.141 -2.075*** 0.267 

Household Graze Livestock 0.611*** 0.008 0.662*** 0.005 0.050*** 0.009 

Pasture Land size 1173.04*** 40.72 530.228*** 39.01 -642.81*** 93.061 

Years plot left fallow 0.204*** 0.004 0.271*** 0.009 0.068*** 0.010 

No of HH members worked on plot 2.509*** 0.006 2.175*** 0.013 -0.400*** 0.015 

Household hired labor 0.153*** 0.006 0.110*** 0.003 -0.043*** 0.006 

Household planted on time 0.778*** 0.007 0.692*** 0.004 -0.086*** 0.008 

Household used hybrid seeds 0.426*** 0.008 0.438*** 0.005 0.013 0.009 

Household used certified seed 0.410*** 0.008 0.415*** 0.005 0.005 0.009 

Household used free seeds 0.242*** 0.007 0.250*** 0.004 0.008 0.008 

Distance to seed market 9.897*** 0.145 10.533*** 0.360 0.636* 0.362 

Number of trees 188.05*** 3.277 205.149*** 8.774 17.094** 8.331 

Household lost trees 0.023*** 0.002 0.040*** 0.002 0.018*** 0.003 

Household owned animals 0.127*** 0.005 0.145*** 0.003 0.176*** 0.006 

Household dipped animals 0.059*** 0.004 0.062*** 0.002 0.003 0.004 

No of Plots  3.085*** 0.012 2.867*** 0.023 -0.218*** 0.029 

Household own land document 0.218*** 0.007 0.204*** 0.004 -0.014* 0.008 

Household own plot 0.258*** 0.007 0.286*** 0.004 0.028*** 0.008 

Household own land 0.009*** 0.001 0.015 0.001 0.006*** 0.002 

Household have sell rights 0.008*** 0.001 0.003*** 0.001 -0.004*** 0.001 

Temperature 21.773*** 0.004 21.742*** 0.009 -0.031*** 0.009 

Rainfall 54.862*** 0.041 54.910*** 0.102 0.049 0.102 

Distance to Agric Market 0.091*** 0.010 0.024*** 0.011 -0.067*** 0.024 

Household received residential input  0.054*** 0.004 0.068*** 0.002 0.014*** 0.005 

Household received vulnerable input  0.030*** 0.003 0.033*** 0.002 0.003 0.003 

Household experienced erosion Problem 0.395*** 0.008 0.291*** 0.004 -0.104*** 0.009 

Table of mean differences and test of significance. *** p < 0.01, ** p < 0.05, * p < 0.1. 
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Table 5: CSA adoption and marginal effects of probit models 
VARIABLES CSA Practice Marginal Effects 

Age of household head 0.0178*** 0.00554*** 

 (0.00640) (0.00199) 

Age of household head squared -0.000113 -3.51e-05 

 (6.85e-05) (2.13e-05) 

Slight Slope land 0.182*** 0.0558*** 

 (0.0259) (0.00785) 

Moderate Slope land 0.336*** 0.107*** 

 (0.0451) (0.0151) 

Steep/Hilly land 0.529*** 0.176*** 

 (0.0836) (0.0301) 

Poor soil Quality -0.244*** -0.0768*** 

 (0.0283) (0.00905) 

Fair soil quality -0.0793** -0.0261** 

 (0.0357) (0.0117) 

Clay soil -0.294*** -0.0897*** 

 (0.0377) (0.0112) 

Sand& Clay soil -0.173*** -0.0547*** 

 (0.0303) (0.00958) 

Forest soil 0.278*** 0.0979*** 

 (0.0482) (0.0175) 

Loam soil 0.261*** 0.0919*** 

 (0.0408) (0.0146) 

Other soil type -1.966*** -0.289*** 

 (0.254) (0.00869) 

Household owned animals -0.0548 -0.0171 

 (0.0342) (0.0106) 

Household lost trees -0.402*** -0.125*** 

 (0.0675) (0.0209) 

Household received Residential Input -0.303*** -0.0944*** 

 (0.0885) (0.0275) 

Household received Vulnerable input -0.479*** -0.149*** 

 (0.111) (0.0345) 

Household used free seeds 0.0335 0.0104 

 (0.0330) (0.0103) 

Household hired labor 0.218*** 0.0679*** 

 (0.0352) (0.0109) 

Household own land -1.220*** -0.380*** 

 (0.217) (0.0674) 

Household have sell rights -2.783*** -0.866*** 

 (0.244) (0.0770) 

Household experienced erosion Problem 0.183*** 0.0569*** 

 (0.0253) (0.00783) 

Household Graze Livestock -0.170*** -0.0529*** 

 (0.0251) (0.00778) 

Male # Own Plot -0.0948*** -0.0295*** 

 (0.0335) (0.0104) 

Male # Vulnerable Input Subsidy 0.513*** 0.160*** 

 (0.133) (0.0414) 

Male # Residential Input Subsidy 0.181* 0.0563* 

 (0.101) (0.0314) 
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VARIABLES CSA Practice Marginal Effects 

   

Male  #Sell rights 4.442*** 1.382*** 

 (0.198) (0.0626) 

CV of Rainfall 0.00296** 0.000922** 

 (0.00138) (0.000428) 

CV of Temp -0.0651*** -0.0202*** 

 (0.0114) (0.00354) 

No of Plots 0.00588 0.00183 

 (0.00492) (0.00153) 

Constant -0.522  

 (0.324)  

Observations 14,585 14,585 
Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 

 

 

Table 6: ATT estimates from IPW regression model results 

Variables Household Dietary Diversity Vulnerability index Value of Livestock  

CSA Adoption 0.220*** -0.187*** -13.372*** 

 (0.026) (0.068) (3.554) 

Constant 8.145*** 4.126*** 50.309*** 

 (0.014) (0.036) (2.513) 

 

Table 7: ATT estimates from IPW regression model results: male headed Households 

Variables Household Dietary Diversity Vulnerability index Value of Livestock  

CSA Adoption 0.121*** 0.226*** -17.517*** 

 0.039 0.092 4.495 

Constant 8.116*** 4.022*** 55.083*** 

 0.018 0.0481 3.667 

 

Table 8: ATT estimates from IPW regression model results: female headed Households 

Variables Household Dietary 

Diversity 

Vulnerability index Value of Livestock  

CSA Adoption 0.313*** -0.673*** -11.419** 

 0.042 0.107 5.280 

Constant 8.198*** 4.267*** 43.479*** 

 0.022 0.055 3.229 

 

 

 

28



Table 9: OLS and Instrumental variable regression model Results 

 OLS Model 

estimates 

IV Regression model estimates 

 (1) (2) (3) (4) 

VARIABLES HDD HDD Value of Livestock Vulnerability Index 

CSA Practices 0.212*** 0.248 -216.4*** -12.43*** 

 (0.0259) (0.550) (80.23) (2.473) 

Animal Expenses 0.000536 0.000381 0.403 0.000644 

 (0.000459) (0.000472) (0.351) (0.00147) 

Age of household head 0.0135* 0.0127 -0.525 -0.141*** 

 (0.00733) (0.00786) (1.028) (0.0308) 

Age of household head squared -0.000140* -0.000135* 0.0117 0.00175*** 

 (7.71e-05) (8.01e-05) (0.0105) (0.000319) 

Years plot left fallow 0.0309** 0.0477 -18.55*** -1.000*** 

 (0.0133) (0.0406) (5.797) (0.186) 

No of HH members worked on 

plot 

0.00648 0.00560 -2.098 -0.0231 

 (0.00860) (0.0111) (1.759) (0.0499) 

Household hired labor 0.301*** 0.264*** 28.82** 0.168 

 (0.0370) (0.0612) (11.24) (0.287) 

Household planted on time 0.163*** 0.235*** 14.69* 0.266 

 (0.0273) (0.0562) (8.565) (0.258) 

Distance to seed market 0.000757* 0.000729* 0.00808 -0.00390** 

 (0.000421) (0.000437) (0.0719) (0.00165) 

Number of trees 5.05e-05*** 6.03e-05*** -0.00224 -0.000211*** 

 (1.16e-05) (1.45e-05) (0.00270) (6.47e-05) 

Household lost trees 0.792*** 0.785*** -33.90*** -1.703*** 

 (0.0555) (0.0799) (11.71) (0.348) 

Household own land document 0.329*** 0.284*** 27.81*** 0.165 

 (0.0298) (0.0303) (6.889) (0.145) 

Household owned animals 0.0551 0.0571 322.7*** -0.563*** 

 (0.0338) (0.0360) (12.51) (0.166) 

Household dipped animals 0.0484 0.0491 16.78 -0.686*** 

 (0.0533) (0.0542) (12.64) (0.234) 

No of Plots 0.00982** 0.0291*** -1.442* -0.164*** 

 (0.00428) (0.00471) (0.808) (0.0261) 

Household own land 0.671*** 0.618*** -49.69 -5.756*** 

 (0.0980) (0.160) (37.93) (0.743) 

Household have sell rights 0.567*** 0.830*** -143.4** -0.930* 

 (0.102) (0.122) (63.04) (0.499) 

Household Graze Livestock 0.304*** 0.305*** -7.114 -1.085*** 

 (0.0257) (0.0342) (4.843) (0.171) 

Pasture Land size -2.81e-06 -2.05e-06 0.00255** -1.01e-05 

 (2.00e-06) (1.99e-06) (0.00126) (2.01e-05) 

Male # Own Plot 0.123*** 0.158*** -9.324 -1.201*** 

 (0.0319) (0.0390) (5.717) (0.179) 

Male # Vulnerable Input Subsidy 0.319*** 0.280*** -8.413 2.579*** 

 (0.0861) (0.0958) (11.48) (0.454) 

Male # Residential Input Subsidy 0.0309 0.0211 -17.99** 0.278 

 (0.0476) (0.0529) (7.501) (0.270) 

Male  #Sell rights -0.00581 -0.279 237.3*** 9.018*** 

 (0.129) (0.308) (80.47) (1.845) 

CV Rainfall -0.0242***    

 (0.00140)    

CV Temp -0.194***    

 (0.0113)    

Constant 13.05*** 7.197*** 55.06** 11.57*** 

 (0.350) (0.187) (22.67) (0.696) 

Observations 14,585 14,585 14,585 14,585 

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Figure 1: Map of Zimbabwe’s agro-ecological zones 
 

  

Source: http://www.fao.org/3/a0395e/a0395e06.htm  
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Figure 1: Conceptualization of Climate Smart Agriculture 

 

Source: Adapted from FAO (2013) 
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Annex 1 

Table A1. Distribution of CSA practices by region (Province) 

 Manicaland Mashonaland Central Mashonaland East Mashonaland West 

variable N mean Sd N mean Sd N Mean Sd N mean Sd 

Irrigation 2469 0.0737 0.261 1944 0.0118 0.108 1810 0.189 0.392 1732 0.00577 0.0758 

Water Harvesting 2469 0.0162 0.126 1944 0.0108 0.103 1810 0.0271 0.162 1732 0.0370 0.189 

Border Trees 2469 0.534 0.499 1944 0.383 0.486 1810 0.387 0.487 1732 0.447 0.497 

Erosion Control 2469 0.519 0.500 1944 0.461 0.499 1810 0.403 0.491 1732 0.317 0.465 

Cover Crop 2469 0.0186 0.135 1944 0.00977 0.0984 1810 0.0906 0.287 1732 0.0167 0.128 

Organic Manure 2469 0.306 0.592 1944 0.270 0.595 1810 0.274 0.485 1732 0.174 0.449 

Intercropping 2469 0.154 0.361 1944 0.224 0.417 1810 0.222 0.415 1732 0.0906 0.287 

Zero Tillage 2469 0.00648 0.0803 1944 0.107 0.309 1810 0.0442 0.206 1732 0.0779 0.268 

Fallow Farm 2469 0.145 0.352 1944 0.120 0.325 1810 0.153 0.360 1732 0.00289 0.0537 

 

 

 Masvingo Matabeleland North Matabeleland South Midlands 

Variable N Mean Sd N Mean Sd N Mean Sd N mean Sd 

Irrigation 1639 0.0189 0.136 1669 0.0330 0.179 1901 0.0252 0.157 1421 0 0 

Water Harvesting 1639 0.0122 0.110 1669 0.0569 0.232 1901 0.0147 0.120 1421 0.0162 0.126 

Border Trees 1639 0.373 0.484 1669 0.460 0.499 1901 0.0179 0.133 1421 0.440 0.497 

Erosion Control 1639 0.605 0.489 1669 0.123 0.329 1901 0.319 0.466 1421 0.294 0.456 

Cover Crop 1639 0.0336 0.180 1669 0.0935 0.291 1901 0.0268 0.162 1421 0.0746 0.263 

Organic Manure 1639 0.217 0.453 1669 0.191 0.442 1901 0.160 0.462 1421 0.239 0.468 

Intercropping 1639 0.455 0.498 1669 0.241 0.428 1901 0.593 0.491 1421 0.263 0.441 

Zero Tillage 1639 0.00854 0.0921 1669 0 0 1901 0.0132 0.114 1421 0.0246 0.155 

Fallow Farm 1639 0.210 0.407 1669 0.000599 0.0245 1901 0.109 0.312 1421 0.0113 0.106 
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