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Abstract

Motivated by the distinctive paradoxical nature of the Nigerian econ-
omy as the only OPEC oil-exporting economy that yet depends heavily on
the importation of gasoline, we are compelled to re-examine the accuracy
of the oil-based augmented Philips curve model in the predictability of
inflation. Using quarterly data from 1970 to 2020, we investigate whether
including the exchange rate into the oil price-based augmented Phillips
curve improves the accuracy of forecasting inflation for the Nigerian econ-
omy. We rely on the outcomes of our preliminary analysis to account for
the presence of endogeneity, persistence, and conditional heteroscedastic-
ity in the predictability of inflation following the Westerlund & Narayan
(2015) procedure. We find the extended variant of the oil price-based
Phillips curve model that includes the exchange rate pass-through as most
accurate for improving inflation forecasts in Nigeria. Given the robust-
ness of our results from several models, we conclude that the exchange rate
channel through which shocks to the oil price transmit into the economy
is essential for forecasting inflation.
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1 Introduction

Low and stable inflation remains a key objective of monetary policy in most
countries across the globe. But achieving this objective can be quite challenging
in the absence of a reliable inflation forecasting framework. Since monetary pol-
icy and its ultimate success in achieving price stability depends, among others,
on the likely path of inflation, the quest for more accurate and reliable infla-
tion forecasts cannot be overemphasized. At least not for developing economies
whose inflation dynamics are relatively more complex than those of advanced
economies (see Kapur, 2013). Essentially, there have been increasing efforts to
improve inflation forecasts, both in terms of methodology and efficiency of the
predictors. However, while the Phillips curve remains the workhorse of many
predictive models in forecasting inflation, its restrictiveness to a single approach
of forecasting inflation has continued to fuel doubt on its usefulness to do so
accurately. Confirming this position is the submission by Atkeson & Ohanian
(2001) that the Phillips curve-based forecast tends to give larger out-of-sample
prediction errors than a simple random walk forecast of inflation (see also Cec-
chetti et al., 2000; Stock & Watson, 1999, 2001, 2002).

Motivated by the assertion that the problem with the Phillips curve is due
to the simplicity of its specification, Stock & Watson (2003) and Brave & Fisher
(2004) extend the analysis to include additional activity predictors. Findings
from these studies confirm the dominance of the autoregressive random walk
model as the most appropriate to forecast inflation (see, for example, Ang,
Bekaert & Wei, 2007; Canova, 2007; Matheson, 2006; Stock & Watson, 2007).
It is in this light, among others, that Stock & Watson (2008) questioned the use-
fulness of the Phillips curve or the activity-based predictive model in forecasting
inflation (see Banbura & Mirza, 2013; Diron & Mojon, 2008). For instance, the
actual inflation movements are influenced not only by demand-side pressures
but also by supply-side shocks. Consequently, much research effort has recently
been directed towards understanding the extent to which supply-side shocks
such as changes in oil price matters in the Phillips curve predictability of in-
flation (see Adelakun & Ngalawa, 2020; Brown & Cronin, 2010; Chen et al.,
2014; Ciner, 2011; Fernandez, 2014; Frankel, 2013; Gelos & Ustyugova, 2016;
Kagraoka, 2015; Karlsson & Karlsson, 2016;Richards et al., 2012; Salisu et al.,
2018; Salisu & Isah, 2018; Tule et al., 2020).

Notwithstanding the above, most of the aforementioned studies are rooted
mainly on the cost-push side of inflation, where oil is seen as an input to pro-
duction. This raises yet another concern on whether their findings of improved
inflation forecasts are sensitive to the oil-importing/oil-exporting peculiarity of
the cases investigated. For example, in oil-importing economies where oil is
seen as an important input in the production process, an upward trend in oil
price movements is expected to increase the general price level through higher
production costs. For oil-exporting economies on the other hand, particularly
those relying on oil earnings to finance government expenditure, shocks to the
oil price will first and foremost affect their economies through fiscal channels
and then the general price level through exchange rate pass-through.



From the preceding discussion, it is clear that the impact of an oil price
change for inflation forecasting purposes cannot be isolated from the channels
through which such shocks transmit to the economy. Thus, while acknowl-
edging that there has been growing efforts to evaluate the accuracy of the oil
price-based augmented Phillips curve [henceforth OP-APC] in the forecasting
of inflation (see Adelakun & Ngalawa, 2020; Tule et al., 2020), it is instruc-
tive that these extant studies have continued to ignore some key insights in
their methodological approach such as the perspective of oil-exporting versus
oil-importing economies. Beyond extending the Phillips curve to include oil
price-based supply-side shocks, it is not clear the extent to which the non-
consideration of the channel through which shocks to oil price transmits into
the economy is likely to undermine the accuracy of the inflation forecast. In
this study, we thus evaluate the role of the exchange rate in the accuracy of
OP-APC inflation predictability model.

The rest of the paper is structured as follows: Section 2 discusses the con-
tribution of the study to the literature and the motivation for choosing the
economy under investigation. The next section presents the estimation model,
including the forecast performance measures. The data used in the study and
some other some preliminary information are then outlined in Section 4. The
pen-ultimate section presents and discusses the empirical results, while the last
part concludes the study.

2 DMotivation for the Study and Contribution to
the Literature

As indicated to previously, we choose the Nigerian economy as our case-study
becuase it remains one of the few top oil-producing countries that yet depends so
heavily on the importation of gasoline. In other words, Nigeria is the only OPEC
member that relies on proceeds from oil exports mainly to ensure a constant
supply of foreign exchange to meet her high gasoline import bills. Unlike Tule
et al. (2020) whose study mainly identifies with changes in the oil price as
the potential for enhancing the accuracy of inflation forecasting in Nigeria; this
study rests on the oil-exporting—fuel-importing paradox feature of the Nigerian
economy to hypothesise as follows: it is incorrect to treat all changes in the
dollar-price of oil as exogenous in a predictive model without taking cognizance
of the channel through which oil price shocks transmits into the economy.
Theoretically, the terms of trade channel linking the oil price and the ex-
change rate posit that a depreciation of currencies will follow an oil price in-
crease in countries with large oil dependence in the tradable sector (Amano &
van Norden, 1998; Benassy-Quere et al., 2007). There are then also the wealth
and portfolio channels, which assert that when the oil price rises, wealth is
transferred to oil-exporting countries, and this is reflected in an improvement
in the current account balance. With oil-exporting countries’ currencies likely
to appreciate, the reverse is expected for oil-importing economies (Golub, 1983;



Buetzer et al., 2016; Krugman, 1983; Turhan et al., 2014;). Based on this the-
oretical position, it thus emerges that the exclusion of exchange rate in any
empirical analysis of the impact of oil supply shocks might lead to incorrect es-
timates of the impact of such shocks since the exchange rate has been proven to
be the channel through which shocks to the oil price transmits into the economy
(see Ahmad & Hernandez, 2013; Aloui et al., 2013; Atems et al., 2015; Bal &
Rath, 2015; Bouoiyour et al., 2015; Chen, 2016; Chou & Tseng, 2015; Fowowe,
2014; Jiang & Gu, 2016; Le & Chang, 2011; Park & Ratti, 2008; Roberodo,
2012; Turhan et al., 2014; Yang et al., 2017).

One of the main contributions of this present study is to test whether the
augmented oil price-based Phillips curve model that includes the exchange rate
as the channel through which shocks to the oil price transmits into the economy
will render better inflation forecasts. Secondly, in addition to the inclusion of
this factor, there has been an emerging debate on whether the nexus between the
oil price and the exchange rate is linear or nonlinear. Indeed, this concern has
been given considerable attention in the literature, with several of the extant
studies affirming that there are asymmetries in the nexus.! However, while
many previous studies forecast inflation using nonlinear models (see Ascari &
Marrocu, 2003; Marcellino, 2008; Moshiri & Cameron, 2000), to our knowledge,
little attention has been paid to the sensitivity of the role of the exchange rate in
the oil-price forecast of inflation to the linear or nonlinear channels of exchange
rate pass-through.

In view of the above, including the exchange rate for enhancing the forecast
accuracy of the OP-APC model in predicting inflation may yet also muddle
whether the shock is trasmitted in a linear (symmetric) or nonlinear (asym-
metric) fashion. To accommodate for this concern, we further disaggregate the
exchange rate channel in the proposed modified OP-APC model into positive
and negative changes in exchange rates, which equally depicts currency depre-
ciation and appreciation, respectively. Methodologically, the predictive models
considered in this context are constructed to accommodate the statistical fea-
tures of the considered series (see Table 1). Finally, we test the robustness of
our findings by comparing the forecast performance of our preferred augmented
Phillips curve predictive model to several conventional time-series predictive
models used previously in the literature.

3 Model and Estimation Procedure

3.1 The model

As a starting point to our proposed modified OP-APC predictive model to
include the role of exchange rate pass-through, the traditional demand-side-
based Phillips curve model (TPC) is specified in equation (1) as follows:.

= a + Bmi_y + MInY —InY) + & (E1)

1See Alqaralleh (2020) for an extensive review on the asymmetric response of the exchange
rate to an oil price shock.



where 7y = In P, — In P, is inflation and (InY; — InY;) is the output gap
(yg) such that Y; is the actual output and Y; is the potential output that is
being measured using the Hodrick Prescott (henceforth HP) filter, while the
gf term is the aggregate supply curve. But as highlighted by Phillips & Shi
(2019), the HP filter suffers from the same criticism as the linear trend method
since it is mechanical and not based on economic theory. Notwitstanding these
limitations, the HP filter has the advantage (over the linear trend method) of
making the output gap stationary over a wide range of smoothing values, in
addition to allowing the output trend to change over time.

Theoretically, inflation is expected to rise when actual output is greater than
expected output; hence we predict a positive relationship between the output
gap and inflation. To augment the Phillips curve model in equation (1) with a
supply-side oil price-based shock, we follow the Catik & Onder (2011) approach
to rewrite the backward-looking Phillips curve equation as:

7 = a + B(L)m + A(L)yg: + 6(L)op; + €5. (E2)

Equation (2) is the OP-APC predictive model where 5(L), A(yg), and 6(op)are
the polynomial in the lag operator of inflation rate, the output gap, and changes
in the oil price, respectively. However, while the estimated coefficients of all
parameters, for instance, 3, Aanddare predicted to be positive, it is instructive
that the magnitude of the parameter dmight be sensitive to the structure of the
economy under consideration (see Catik & Onder, 2011; Marquez, 1984; Salisu
et al., 2017). For the probable effects of changes in the relative price associated
with the country’s importation of oil-related intermediates, we capture these via
the exchange rate pass-through as

= a + [B(L)m + AN(L)yge + 0(L)op; + Y(L)ery + &f. (E3)

Equation (3) is the proposed extended version of the OP-APC predictive model
that includes the role of exchange rage rate pass-through. However, pertinent
to this study is whether shocks to the oil price transmission into the economy
via the exchange rate pass-through matter for the forecast accuracy of inflation
in Nigeria. Hence, to ensure that the exchange rate in equation (3) does not
merely imply the addition of a regressor in the equation, we further re-represent
the oil price exchange rate mechanism in the specification in an interactive form
as

m = a+B(L)m + AN(L)yge + 6(L)ops + (L)ery + ®(L)opyxery +ef (E4)

The emphasis in equation (4) is on the statistical significance of the interaction
coefficient, and whether the forecasting power of oil price-based supply-side
shock is more accurate when captured via the exchange rate pass-through. To
evaluate whether asymmetries matter in the role of exchange rate pass-through
for enhancing the forecasting accuracy of the oil-based augmented Phillips curve
model, we partition the exchange rate pass-through into positive and negative



changes in the exchange rate as

m = a+B(L)m + AN(L)yge + 6(L)ope + ¢F(L)ery + ¢~ (L)ery
+ & (L)op; x er; + & (L)ops * er; + €
(E5)
where er;” and er; are, respectively, the positive and negative partial sum of
exchange rate pass-through, defined as below following the Shin et al. (2014)

t t t
procedure. eq";’_ = Zl Ae’r;r = Zl max(Aerj, 0) and €7"t_ = Zl Aerj_ =
j= i= J=

t
>~ min(Aerj, 0)
j=1

The intuition behind equations (5) & (6) is to determine whether the trans-
mission of oil price shocks via the exchange rate varies for an exchange rate
depreciation (positive change in the exchange rate) compared to an exchange
rate appreciation (negative change in the exchange rate). If they do, then the
exchange rate role in the oil price-inflation forecast is likely to be asymmetrical.
And, if otherwise, then incorporating such asymmetries is likely to produce less
optimal results when compared to the symmetric variant.

3.2 Estimation Technique - The Westerlund & Narayan
Procedure

As reported in Section 4 below, there is evidence of a mixed order of integration
of the data series; conditional heteroscedasticity (becuase of the high-frequency
of the data); endogeneity bias (due to the exclusion of some important predic-
tors), and lastly, persistence due to the dynamic behaviour of economic agents.
Thus, estimating the predictive model(s) in equations (1) through to (5) with
the conventional OLS is likely to be biased to some, if not all, of these statistical
features, as exhibited both by the predicting and predictor series (see Table 1).

In view of the above, we adjust the predictive models in line with the Wester-
lund & Narayan (2012, 2015) procedure, particularly to account for the inherent
statistical features of the series. This procedure has been consistently validated
empirically in the literature as reliable when forecasting with historical and
high-frequency data (see Devpura et al., 2018; Isah & Raheem, 2019; Narayan
& Bannigidadmath, 2015; Narayan & Gupta, 2015; Salisu et al., 2019; Salisu
& Isah, 2018; Tule et al., 2020). Our adjusted predictive model to forecast
inflation in Nigeria is therefore as follows:

m=a+ By, 46 (@ = pzia) +my (E6)

where 7; remained as previously defined and z; is a potential predictor of infla-
tion (m¢) which is output gap (yg:) in the case of bivariate traditional Phillips
curve (TPC) model in equation (1). Correspondingly, the z; in the case of the
multivariate predictive model of equations 2, 3, 4 & 5 includes not onlyyg; but
op; & exy, as well as the asymmetric feature as in the case of equation 5.



The above procedure, known as the Lewellen (2004) approach, adjusts for
the probable biasedness in the OLS estimator of 5. But this Lewellen esti-
mator mainly captures (only) endogeneity and persistence effects (including
any inherent unit root problem in the predictor series), whereas the Feasible
Quasi Generalized Least Squares (FQGLS) estimator of Westerlund & Narayan
(2015) captures these effects and, additionally, information on any conditional
heteroscedasticity.

The FQGLS estimator assumes that the regression error, i.e. 7,, follows
an autoregressive conditional heteroscedasticity (ARCH) structure 6’3]),5 =+

q
S ;7 ;, so that the resulting &%,t may then be used as a weight in the pre-
i=1

dictive model (see Devpura et al., 2018; Isah & Raheem, 2019; Narayan &
Bannigidadmath, 2015; Narayan & Gupta, 2015; Salisu et al., 2019, 2020; Sal-
isu & Isah, 2018; Tule et al., 2020). Basically, the GLS-based t-statistic for
testing 8 = 0 is given as below (see Westerlund & Narayan, 2015):

T 2,..d ,.d
_ Zt:an-l-ZTtxt—lrt
troarLs = \/

(E7)

Z?:qm +2 Tt2 (x;fi— 1 ) :

where 7, = 1/0,; is used in weighting all data in the predictive model and

d T
Ty = Tt — Zs:Q CL't/T
For the purpose of our analyses, we consider the following pair of predictors:

T =+ Bygi—1 + 0 (Yge — pyge—1) +n; (E8a)

T =+ Bygygi—1 + BopoPi—1 + Oyg (Y9t — Pyay9i-1) (E8b)
+0op (Opt - Pop0pt—1) + N

Tt =+ Bygygi—1 + Bopopt—1 + Ber€ri—1 + BopuerOP * €711
+dyg (ygt - pygygt—l) + dop (OPt - POPOPt—l) + Oer (€re — peperi—1)  (E8c)
+0oprer (0D * €Tt = PoprerOP ¥ €T1—1) + 1y

T =+ 6ygygt*1 + Bopoptfl + Ber*erjfl + /367’767';71 + 60[)*67‘+0p * 67";’;1
+ ﬁop*er* op * ert_—l + 5yg (ygt - Pygygt—l) + 667‘* (67“?_ - pe7~+er:——1)
F0er— (€7 = Per—€ri_1) + Ooprert (0P * €rf — popucrrop* erf
+ 6op*e7'* (Op *ery — Popxer—OP * 67“;_1) + 7
(E8d)
Equation (8a) represents the traditional Phillips curve (TPC), while its aug-
mented variant (OP-APC), capturing the supply-side shock via changes in oil
prices, is expressed in equation (8b). The proposed extended variant of equa-
tion (8b) that includes the role of exchange rate pass-through (OP-APC-ER)
is represented in equation (8c). And lastly, equation (8d) is OP-APC-ASY:ER
i.e. the asymmetric variant of equation (8c), where the pass-through of the
exchange rate is captured in a nonlinear form via a partial sum of positive and
negative changes in the exchange rate.



3.3 Forecast Performance Evaluation Measures

Since in-sample forecasts are insufficient to assume out-of-sample forecast gains,
the forecast power of the predictive models will be evaluated for both the in-
sample and out-of-sample periods. Taking cognizance o;f the time-varying fea-
ture of both the predicted and predicting series, we explore a recursive win-
dow approach to generate the forecast results. To evaluate the forecast per-
formance, the accuracy of each model is measured separately [using the Root
Mean Square Error (RMSE), Mean Square Error (MSE) and Mean Absolute
Error (MAE) measures| and these are then complemented using the pairwise
method of Campbell-Thompson (2008) and Clark & West (2007).

Mathematically, the Campbell-Thompson statistic [henceforth; C-T test], of-
ten described as the out-of-sample R-squared (OOS _R?)is computed as OOS _
R? =1-(M[ERR : macc : iOp = 0x0311]Ey /M [ERR : macc : iOp = 0z0311]Ey),
where M[ERR : macc : iOp = 020311]E; and M[ERR : macc : iOp =
020311]E; are the mean square errors associated with the out-of-sample fore-
cast based on TPC, OP-APC and OP-APC*ER, and OP-APC-ASY:ER, respec-
tively. When comparing the TPC and OP-APC, the latter is the unrestricted
model because it is nested off the former. Contrarily, when the OP-APC and
OP-APC-ER are compared, the OP-APC will be the restricted model because
it is nested within the former. Lastly, for a comparison between the OP-APC-
ER and the OP-APC-ASY: ER, the latter, reflecting a non-linear (asymmetric)
exchange rate will be regarded as the unrestricted predictive model, with the
former linear one being nested within it

Given the above, a positive C-T statistic will suggest that the OP-APC out-
performs the TPC model, and vice versa if negative. Likewise, it will also imply
that including the exchange rate in the augmented oil price-based Phillips curve
model will be more accurate for forecasting inflation in Nigeria. Finally, when
the comparison is between the predictive models with an asymmetric exchange
rate (OP-APC-ASY:ER) and the ones without (OP-APC-ER), then a positive
C-T statistic hypothetically implies the predictive model with asymmetry is the
most accurate at forecasting inflation.

To further enhance the C-T test for the purposes of evaluating of nested
models, we complement it with the Clark and West (2007) test [henceforth C-
W]. This is done to further ascertain the statistical significance of the forecast
evaluation results. The underlying procedure for the C-W test involves calcu-
lating the following;:

ok = (Tegj — Freass) — [(Wt-&-j — Fotu4g)” — (Fieass — ﬁzt,tﬂ‘)ﬂ (E9)

where j is the forecasting period; (7¢4; — ﬁ1t7t+j)2 is the squared error for the
restricted model and (m4; — fr%)tﬂ)z for the unrestricted model, respectively,
depending on the comparison of interest.

The (T1¢445 — 7A1'2t7t+j)2 in equation (9) is the adjusted squared error in-
troduced by C-W to correct for any noise associated with the larger model’s
forecast. Thus, the sample average of ft+k. can be expressed as: MSE; —



(MSE5 — adj) and each term is computed as:
MSEl = N_l Z (7Tt+j — ﬁlt,t+j)2;
MSE2 = Nil Z (7Tt+j — 7A1'2t,t+j)2; and

adj. = N1 Z (7AT1t7t+j — ﬁzt,tﬂ)z'

To test for the equality of forecast performance between the restricted and
unrestricted models, the f;y; is regressed on a constant only. The resulting
t-statistic is then used to draw the correct inference for the null hypothesis
predicting equality of the MSEs.

4 Data and Preliminary Analyses

The highest accessible frequency for the output gap (Y G)series for Nigeria,
measured as the log of the difference between the actual output and the po-
tential output, is at a quarterly interval. Hence, we restrict all other variables
to quarterly frequency even though some are available in monthly frequency.
Essentially, the log of the first difference of the consumer price index is used to
proxy for inflation (), while the supply-side component of the Phillips curve
is proxied using the log of the West Texas Intermediate (WTT) crude oil prices.
The exchange rate (er) is measured against the United States Dollar (USD)
as the reference currency, for instance, the log of Naira/USD. Data for all the
variables of interest were obtained from International Financial Statistics (IFS),
but the oil price was sourced from the US Energy Administration Information
(EIA).

The starting date for the sourced data is the first quarter of 1970, and its
end date is the first quarter of 2020, totaling 201 observations. Not in line with
any theoretical guidance though, researchers typically used 25%, 50% or 75% of
the full sample as the in-sample period for estimation, and the balance for the
out-of-sample forecast periods (see Narayan & Gupta, 2015; Salisu et al., 2018;
Salisu & Isah; 2018, Tule et al., 2020). However, our preference for the 50%
of total observations as sufficient for the in-sample period is motivated by our
relatively large sample size when compared to the number of observations used in
other studies (e.g. Tule et al., 2020). In addition, we also consider multiple out-
of-sample forecast horizons such as two-quarter (h = 2), four-quarter (h = 4),
and six-quarter (h = 6) periods ahead forecasts.

We offer some preliminary analyses on the statistical features of the series as
depicted in Table 1, as justification for the choice of methodology adopted in this
study. Starting with the descriptive statistics, the standard deviation portrays
all the series as highly volatile, the only notable exception being the output
gap series. The skewness statistic is non-zero, and together with the fat tail in
the kurtosis statistic, corroborating this tendency of high dispersion in both the
predicted and predictors series. Part A of Table 1 also reports the stochastic
property of the series using the ADF unit root test. The predicting series ( i.e.



the inflation rate) is stationary at level, but otherwise for the various predictors
under consideration. This is not surprising, however, since the inflation rate
is first differenced and therefore expected to be stationary. The predictors, on
the other hand, are all logged in their respective levels, clarifying why they are
become stationary only after first differencing.

Notwithstanding the mixed order of integration of the series, the stochastic
behaviour of both the predicting and predictor series aligns with the chosen
methodology. For example, in Table 1B, the pre-estimation results for autocor-
relation and conditional heteroscedasticity using the Ljung-Box and ARCH-LM
tests, respectively, are presented. Irrespective of lag lengths, serial dependence
and conditional heteroscedasticity are found in all the series at the conventional
levels of significance. There is likewise evidence of a high degree of persistence
and endogeneity bias in the predictor series (see Table 1C). These outcomes
though, are not unexpected for series that are integrated of higher order (see
unit root testing results). But ignoring them can undermine the forecasting
power of these predictors of inflation and therefore validates our preference for
the Westerlund & Narayan (2012, 2015) procedure as the most appropriate
estimator to accommodate these underlying statistical features.

5 Empirical Results and Discussion of Findings

5.1 Predictability Test Results

The broad objective of this study is to examine the extent to which inclusion of
the exchange rate pass-through to the oil price-based augmented Phillips curve
improves the accuracy of inflation forecasts in Nigeria. We begin by testing
the predictability of the predictors. Table 2 presents the bias-adjusted GLS
estimates for each of the predictors across both the single-factor and multiple-
factors-based predictive models under consideration.

Starting with the TPC model, we find a positive and significant impact of
the output gap (yg) on inflation which conforms with our apriori expectation
and findings in previous studies (see Salisu et al., 2018, Salisu & Isah, 2018; Tule
et al., 2020). Furthermore, the positive sign on the coefficient on changes in the
oil price in the OP-APC predictive model supports the hypothesis of a positive
relationship between the oil price and inflation. However, unlike in Tule at al.
(2020), the significance of the inflationary impact of changes in the oil price is
statistically relatively more significant when the oil price is interacted with the
exchange rate in the extended OP-APC predictive model (i.e. OP-APC-ER).
This, among others, supports the trade channel link between the oil price and
the exchange rate. Thus, ignoring the exchange rate as the channel through
which shocks to the oil price transmits into the economy may bias the accuracy
of the Phillips curve forecast of inflation.

On whether asymmetries matter in the exchange rate predictability of in-
flation, we find the coefficient on positive changes in exchange rates (i.e., an
exchange rate depreciation) to be positively signed and statistically significant.
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On the other hand, however, the coefficient on negative changes in exchange
rates (i.e., an exchange rate appreciations) is negatively signed but statistically
insignificant. This further strengthens our hypothesis that asymmetries matter
on the extent to which the exchange rate is capable of enhancing the forecasting
power of oil prices in the predictability of inflation. Complementing our pre-
dictability test results is the graphical illustration of the actual and predicted
inflation series across the various Phillips curve models under consideration.
Figures 1.1 and 1.2 present the actual and predicted inflation series obtained
from the TPC and OP-APC predictive models, respectively. Similarly, Figures
2.1 and 2.2 present the actual and predicted inflation series obtained from the
OP-APC-ER and OP-APC-ASY:ER predictive models, respectively. Compared
to Figure 1, the predicted inflation series in Figure 2 appears to have tracked
the actual inflation series relatively better. Moreover, in addition to extend-
ing the OP-APC predictive models to include the exchange rate pass-through,
the model with a nonlinear (asymmetric) exchange rate pass-through (Fig. 2.2)
tends to track the actual inflation series far better. This supports our hypothesis
that nonlinearity (i.e. asymmetries) in the exchange rate pass-through matters
for improving the exchange rate’s forecasting power of inflation.

5.2 Forecast Performance Results

It is evident from the preceding section that there is overwhelming evidence for
the rejection of the null hypothesis of no predictability, particularly when the
oil price-based augmented Phillips curve is extended to include the exchange
rate. Hence, the innovation here is to determine which variant of the predictive
models under consideration is the most accurate in terms of the predictabil-
ity of inflation in Nigeria. In this regard, Table 3 presents the in-sample and
out-of-sample forecast performances of the respective predictive models under
consideration.

As in Tule et al. (2020), we find the RMSE, MSE and MAE values to be
smaller for the OP-APC when compared to the TPC. Moreover, a further look
at Table 3 indicates that these are relatively even smaller for the Phillips curve
model that includes not only the oil price but also the exchange rate simulta-
neously. Thus, unlike Tule et al.’s (2020) study, which primarily augments the
Phillips curve model with the oil price only, the current study is innovative in
that interacting the oil price with the exchange rate is critical to improving the
accuracy of the inflation forecast in Nigeria.We find this position particularly
pronounced when the exchange rate in the predicive model is captured in a
nonlinear form to account for the role of asymmetries.

We conclude, based on our consistent findings for both in-sample and out-
of-sample forecasts, that, in addition to the oil price, accounting for exchange
rate and its asymmetric feature is important for ensuring the accuracy of infla-
tion forecasts. This suggests that combining the Phillips curve model with not
only the oil price but also the exchange rate and its asymmetries is the most
accurate predictive model (i.e., OP-APC-ASY: ER) from among those tested
for forecasting inflation in Nigeria.
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To ascertain the reliability of our preference for the OP-APC-ASY:ER, we
further complement the RMSE, MSE, and MAE approaches to forecast perfor-
mance evaluation with the pairwise-methods of the C-T and C-W tests, respec-
tively. Starting with the former, since the C-T test statistics in Table 4 are all
positive it suggests that whilst the OP-APC-ER is better than the OP-APC, the
OP-APC-ASY: ER is still overall the most preferred model. For the significance
or otherwise of these C-T test results, the C-W test is then employed.

The underlying intuition is to determine whether the difference between the
forecast errors of two nested models (i.e., OP-APC-ER and OP-APC-ASY:ER)
is statistically significant. A non-rejection of the null of the C-W test implies
identical forecasting accuracy between the two models, whilst a rejection favours
the OP-APC-ER against OP-APC, and the OP-APC-ASY: ER against the OP-
APC-ER. Since the results are statistically significant (at the 5% level), we
again find support for the earlier inference that the model that includes both
the oil price and exchange rate simultaneously (OP-APC-ER) outperforms the
model that includes the oil price only. Likewise, these results also confirm the
superiority of the model that included asymmetries in the exchange rate as the
most accurate, overall, in the predictability of inflation in Nigeria.

5.3 Robustness Check

To further ascertain the reliability of our preferred model (OP-APC-ASY:ER)
as the most accurate for inflation forecasts in Nigeria, we further test its robust-
ness relative to forecasts based on time-series models. The time-series models
considered in the context of this study are the Historical Average (HA), the Au-
toregressive Integrated Moving Average (ARIMA), and the Autoregressive Frac-
tional Integrated Moving Average (ARFIMA). However, while the HA model
only required a reduced form of equation (6) such that;

O (E10)

the generalised specification for ARIMA (p,d,q) is as given below.

(1 — ipiBz) (1-=B)* (¢ — ) = (1 + i@iBi> £ (E11)

where 1) is the drift parameter, (1 — B)d denotes the difference operator, p and
q are the maximum lags for ¢; and e; respectively. The order of integration is
d, that is, the number of times ¢; is differenced to obtain stationarity. However,
since ¢; is integrated of order 1, a simple representation of equation (11) which
is an ARIMA(1,1,1) is considered and it is specified as:

ACt = 7/1 —+&¢ + 916t71 . (El?)
In the case of the ARFIMA model, the(1 — B)%can be defined as the fractional

differencing operator described in a natural way by using the binomial expansion

12



for any real numberd with Gamma function as:

_ - d - d+1)( B)k
_kZ:O(k)( k:OF (k+1)T(d+1—k) (E13)

where T'(-) denotes the generalized factorial function. The parameter d €
(—0.5,0.5) and restricting d to integer values gives rise to the standard ARIMA
model. Thus, the general form of the ARFIMA(p, d, g)process is defined as:

®(B)(1—B)"¢, = Q(B)e. (E14)

The essence is to test whether our preferred variant of the augmented Phillips
curve model will outperform a typical time-series predictive models such as the
HA, ARIMA, and ARFIMA to predict inflation in Nigeria.

Together, both the C-T and C-W statistics in Table 5 and Figures 3.1 to
3.4 below consistently show that the OP-APC-ASY:ER outperforms each of the
time series models considered. We find the robustness of this evidence evident
across both in-sample and out-of-sample forecasts.

6 Concluding Remarks and Policy Implications

Motivated by the distinctive paradoxical nature of the Nigerian economy as the
only OPEC oil-exporting economy that yet depends heavily on the importation
of gasoline, we were compelled to re-examine the accuracy of the oil-based aug-
mented Philips curve model in the predictability of inflation. FEssentially, we
explored historical quarterly frequency data between 1970 and 2020 to examine
whether extending the oil price-based augmented Phillips curve to include the
channel through which changes in oil prices are transmitted into the economy
matters for improving the accuracy of inflation forecasts in Nigeria.

Methodologically, we predicated the outcomes of our preliminary analysis
on the Westerlund and Narayan (2015) procedure as the most appropriate to
accommodate the presence of endogeneity, persistence, conditional heteroscedas-
ticity, and other inherent statistical features exhibited by the series under con-
sideration. Both the single method and pairwise approaches to evaluating fore-
cast performance consistently gave preference to the extended variant of the oil
price-based Phillips curve that includes the role of exchange rate pass-through
as the most accurate for improving inflation forecasts in Nigeria.

Furthermore, when the exchange rate pass-through is captured in nonlin-
ear form, we found improved inflation forecasts. This confirmed our hypothesis
that asymmetries matter in the extent to which exchange rate pass-through en-
hances the forecasting power of oil prices in the Phillips curve predictability of
inflation. We tested the robustness of our finding by comparing the forecast per-
formance of the OP-APC-ASY:ER to that of time-series models (HA, ARIMA,
and ARFIMA). The outcomes consistently favoured the OP-APC-ASY:ER pre-
dictive model as the most accurate for inflation forecasting in Nigeria.
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On the whole, our results are robust to different measures of forecast per-
formance and across both in-sample and out-of-sample forecasts. Thus, consid-
ering the exchange rate as the channel through which shocks to oil prices are
transmitted into the economy seems essential for improving the predictability
of inflation. More importantly, our findings can be used to provide to Nigeria’s
monetary policymakers a more accurate approach to inflation forecasting for
the economy.
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Table 1A: Descriptive Statistics and Unit Root Tests

Std. . ADF test
Variable/Statistic Mean Dev. Skewness Kurtosis JB stat Level FD I(D)
Inflation Rate (7) 49.1766 70.6241 1.6396 48682  119.2905* -4.3608** - 1(0)
Output Gap (YG) -0.0039 0.0699 -0.3223 4.0777 13.2082%+* -3.8226 -18.6290%*  1(1)
Oil Prices (OP) 36.0043 27.6170 1.1509 3.4802 463084 -2.4380 -11.8062%  1(1)
Exchange Rate (ER) 74.7341 91.5100 1.1440 3.4524 45 5603%** -0.2913 -12.4064*  1(1)

Table 1B: Serial Correlation and Conditional Heteroscedasticity Tests

Ljung-Box test ARCH LM test
Q —Stat Q2 — Stat
k=2 k=5 k=10 k=2 k=5 k=10 k=2 k=5 k=10
Inflation Rate () 47,997 105.40%* 127.07%% | 37.976***  81.855**  98.124*** | {05 o57% 368 ARA*** 104,073+
Output Gap (yg) 360.99***  832.74*** 1484.8*** 264.76°*  501.46***  720.96"* | 1690.610%** 544.228%* 175.220%**
Oil Prices (OP) 371.05%**  838.96*** 1428.1%** 343.43**  710.88***  1051.7*** | 7574.691*** 2920.631*** 1389.579***
Exchange Rate (ER) 397.09***  968.64*** 1852.2%** 393.27***  940.63***  1716.5*** | 1265.257***  368.484*** 104.073***

Table 1C: Testing for Persistence and Endogeneity

Output Gap (yg) Oil Prices (OP) Exchange Rate (ER)
Persistence test results 0.96****(0.00) 0.97****(0.00) 0.98****(0.00)
Endogeneity test results 0.4743*(0.00) 0.4690*(0.00) 0.4690**(0.00)

Source: Authors’ computation

Note: For the descriptive statistics, variables are expressed in levels but are log transformed for the unit root, serial correlation, conditional correlation, persistence, and endogeneity tests.
The unit root test performed is the Augmented Dickey-Fuller (ADF) unit root test, while the expression FD implies first difference. For the serial correlation tests, we consider three
different lag lengths (k) of 2, 5 and 10 periods for robustness purposes. The endogeneity test follows a three-step procedure: First, we run a predictive regression model with the OLS
estimator: 7. =+ Az, , + £, where 7, denotes the inflation rate and z, , is the lag of the predictor variable. In the second step, we follow Westerland & Narayan (2015) and model the

predictor variable as follows: z = (1-8)+ 6z, , +¢,, and in the final step, the relationship between the predicting and predictor error terms (¢_ and ¢, ) is captured using the following

regression: ¢ = pe, +n,- If the coefficient P is statistically different from zero; then, the predictor variable is endogenous; otherwise, it is strictly exogenous. In each of the tests, the

*k%

asyteric *** implies significance at the 1% level.
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Table 2: Predictability Test Results using 50% of the Sample

Predictor TPC OP-APC OP-APC-ER OP-APC-ASY:ER
v 0.0266 0.0431* 0.1370* 0.1015°
-1 (0.0026) (0.0242) (0.0745) (0.0066)
op 0.0354* 0.1373* 0.1617*
1 (0.0148) (0.0181) (0.0894)
or -0.0340
-1 (0.1174)
0.3610*
op*en., (0.1897)
- 0.2174*
1 (0.0654)
-0.1279
er_, (0.7298)
0.0717++*
0per, (0.0388)
) 1.9279
op*er,, (1.6708)

Note: The terms TPC, OP-APC, OP-APC-ER, and OP-APC-ASY:ER are as described previously. The values in parenthesis are the standard errors while ***,
** & * implies 1%, 5% & 10% levels of significance, respectively.
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Table 3: Single Method-based Forecast Performance Results using 50% of the Sample

RMSE MSE MAE
In- Out-of-sample In- Out-of-sample In- Out-of-sample
Predictive model sample h=2 h=4 h=6 sample h=2 h=4 h=6 sample h=2 h=4 h=6
TPC 0.0824 0.0847 0.0846 0.0846 0.0064 0.0066 0.0066 0.0065 0.0732 0.0751 0.0752 0.0754
OP-APC 0.0801 0.0814 0.0810 0.0807 0.0062 0.0061 0.0061 0.0060 0.0705 0.0719 0.0715 0.0713

With Linear (Symmetric) Exchange Rate Pass-through

OP-APC-ER 0.0790 0.0783 0.0778 0.0776 0.0062 0.0061 0.0061 0.0060 0.0681 0.0672 0.0669 0.0667

With Nonlinear (Asymmetric) Exchange Rate Pass-through

OP-APC-ASY:ER 0.0691 0.0690 0.0707 00729 0.0048 0.0048 0.0050 0.0053 0.0542 0.0540  0.0556 0.0575

Note: The table reports in-sample and out-of-sample forecast performance of the traditional Phillips curve predictive model vis-a-vis the oil price -based
augmented Philips curve predictive model and across both linear and nonlinear exchange rate pass-through using RMSE, MSE and MAE forecast
performance measures. The smaller the value of RMSE, MSE & MAE), the better the forecast accuracy of a predictor or model.

Table 4: Pairwise Method-based Forecast Performance Results using 50% of the Sample

Campbell-Thompson (C-T) test Clark & West (C-W) test
Out-of-sample Out-of-sample
Predictive model In-sample h=2 h=4 h=6 In-sample h=2 h=4 h=6
0.0008** 0.0005**  0.0004** 0.0004**
OP-APC vs TPC 0.0283 0.0387  0.0430 0.0466 (1.832) (2.189) (2.355) (2.525)
0.0013** 0.0018**  0.0021** 0.0008**
OP-APC-ER vs OP-APC 0.0130 0.0384  0.0387 0.0383 (1.739) (2.223) (2.574) (2.890)
*% *% *% *%
OP-APC-ASY:ER vs OP-APC-ER 0.1253 0.1194  0.0914 0.0603 0.0051 0.0013 0.0013 0.0013

(3.897) (3.851) (3.640) (3.454)

Note: The C-T test results are based on the forecast performance comparison of the models. Hypothetically, a positive C-T value implies that OP-APC
outperforms TPC. Similarly, a positive C-T value implies that OP-APC-ER outperforms OP-APC, and that OP-APC-ASY:ER (nonlinear/asymmetry)
outperforms OP-APC-ER (linear/symmetry). In each of these cases, the reverse holds if the statistic is negative. In the case of C-W test, the t-statistics
(values in parenthesis) are based on the critical values of 1.282 & 1.645 for (10%)* & (5%)** levels of significance, respectively.
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Table 5: Pairwise method -based forecast performance results using 50% of the sample

Campbell-Thompson (C-T) test

Clark & West (C-W) test

In- Out-of-sample In-sample Out-of-sample
Predictive model sample h=2 h=4 h=6 h=2 h=4 h=6
HA vs OP-APC-ASY:ER 0.9778 0.9778  0.9772 0.9765 19.033** 19.058** 19.086** 19.117**
(3.141) (3.466) (3.508) (3.603)
ARIMA vs OP-APC-ASY:ER 0.8225 0.8242  0.8200 0.8148 0.280** 0.284** 0.288** 0.292**
(4.688) (3.708) (3.064) (2.120)
ARFIMA vs OP-APC-ASY:ER 0.9267 0.9271 0.9253 0.9230 1.732%* 1.740** 1.740** 1.758**
(7.067) (7.255) (7.424) (7.661)

Note: The C-T test results are based on the forecast performance comparison of the preferred model (OP-APC-ASY:ER) with conventional time-series
predictive models. Hypothetically, a positive C-T value implies that OP-APC-ASY:ER outperforms the time series models. For C-W test, the t-statistics
which are the values in parenthesis are based on the critical values of 1.282 & 1.645 for (10%)* & (5%)** levels of significance, respectively.
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Figure 1: Inflation predictability based on TPC and OP-APC Models

Figure 1.1: Output gap predictability of inflation using Figure 1.2: Oil price-based predictability of inflation using
the traditional Phillips Curve model the Augmented Phillips Curve (APC) model
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Figure 2: Inflation predictability based on OP-APC-ER Models

Figure2.1: Qil price & exchange rate-based predictability of inflation Figure2.2: Oil price & asymmetry exchange rate predictability of inflation
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Figure3.1: Inflation predictability based on the historical average model(HA)

3.2

Figure 3: Inflation predictability based on time-series models and OP-APC-ASY:ER

Figure 3.2: Inflation predictability using ARIMA
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Figure 3.3: Inflation predictability using ARFIMA
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Figure 3.4: Oil price & asymmetry exchange rate based predictability of inflation
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