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Abstract 

Climate change has emerged as one of the defining risks in recent years. These risks are 

associated with economic losses and, eventually, the financial system's stability. This paper 

empirically examines the impact of climate change on financial stability in Namibia. This study 

employs a Nonlinear Autoregressive Distributed Lag (NARDL) approach to examine how 

climate change asymmetrically affects the stability of Namibia’s financial system, using 

quarterly data from 2009 to 2023. The findings reveal that both increases and decreases in 

rainfall patterns negatively affect financial stability in the long run. Moreover, an increase in 

temperature has a negative asymmetric effect on financial stability. Interestingly, increases in 

CO2 emissions are associated with improvements in financial stability. Therefore, the study 

recommends the integration of climate-related risks into financial institutions’ risk assessment 

frameworks and the adoption of long-term risk monitoring and mitigation strategies. 

Furthermore, the study also recommends that regulators should conduct climate stress testing 

to assess the resilience of the financial system stability under varying climate scenarios.  
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1. Introduction 
Climate change has emerged as a defining challenge of the 21st century, bringing about many 

environmental, social, and economic transformations. According to the Intergovernmental 

Panel on Climate Change (IPCC, 2021), the global average surface temperature increased by 

approximately 1.1°C between 2011 and 2020 compared to the period from 1850 to 1990. 

Abnormal shifts in the climate system have led to a rising frequency and intensity of extreme 

weather and climate events worldwide. These events significantly impact the real economy. 

Given that finance plays a pivotal role in economic development, such events can also affect 

the financial sector through various channels, potentially threatening the value of assets and 

income sources of borrowers. Consequently, regulators are increasingly focusing on climate-

related risks. For instance, central banks and the Network for Greening the Financial System 

(NGFS) have initiated efforts to integrate climate-related risks into supervision and financial 

stability monitoring. Dietz et al. (2016) noted that climate change could lead to losses in global 

financial assets estimated at approximately USD 24 trillion. Liu et al., (2024) contended that 

climate change generates a sequence of financial fluctuations, which could potentially cause 

system risk and affect the safety and stability of the financial sector. As a result, climate change 

has become a growing concern and a source of risk for financial stability.  

Risks to financial stability from climate change are notably uncertain, both in severity 

and time horizon, as emphasized by the Financial Stability Board (2020). The future trajectory 

of climate change and its impact on the financial system is highly uncertain and could exhibit 

nonlinear dynamics over time, often contingent on policy measures. While research on the 

effect of climate change on financial stability is still evolving, existing literature indicates that 

climate change primarily affects the financial system through physical and transition risks. This 

heightened attention gained momentum following the Governor of the Bank of England, Mark 

Carney’s, 2015 speech titled "Breaking the Tragedy of the Horizon - Climate Change and 

Financial Stability". Physical risks refer to disruptions in economic activity or decline in asset 

values resulting from the direct impact of climate change, such as droughts, flooding, 

hurricanes, and wildfires. Transition risks refer to the financial risks associated with the shift to 

a lower-carbon economy aimed at mitigating climate change. Against this backdrop, the 

financial sector, a linchpin in the country's economic landscape, faces a range of challenges 

emanating from both physical and transition risks associated with climate change. 

Namibia experiences climate-related challenges that extend beyond its impact on 

agriculture, adversely influencing household income levels. According to the World Bank 
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(2021), Namibia suffered its most severe drought in 2013, affecting nearly 37 percent of the 

population. Table 1 shows that although flooding is a frequent phenomenon in Namibia, 

drought episodes tend to be more devastating, costing the country an estimated USD 175 

million annually. Besides drought and floods, wildfires have become a growing concern for the 

country as it witnessed a staggering 499 344 hectares of land consumed by uncontrolled fires 

between January and April 2023 (BoN, 2024).  

Table 1: Climate events in Namibia between 1900 and 2023 

Climate events Number of 
events 

Total Affected Total Damage (‘000 
USD) 

Drought 8 2,143,200 Aggregate headcount 175,000 

Flood  12 1,094,450 Aggregate headcount 40,980 

Wildfire 3 3 million Hectares (2021) 
2.4 million Hectares (2022) 
499,344 Hectares (2023) 

Estimate not available 

Source: World Bank 

Given that economic activities ultimately underpin financial assets, climate-related risks can 

therefore affect the financial system. Despite Namibia’s Nationally Determined Contributions 

(NDC) Implementation Strategy and Action Plan, there is limited empirical literature providing 

a quantitative understanding of the impact of climate risks on the financial sector. Such 

evidence is crucial to facilitate efficient adjustment of business models, policy adaptation, and 

mitigation strategies. This is especially pressing in light of the principles for the effective 

management and supervision of climate-related financial risks, published by the Bank for 

International Settlements (BIS) in June 2022, which aim to enhance banks’ risk management 

and supervisory practices related to climate risks.  

Climate change presents growing risks to financial systems, particularly in climate-

vulnerable developing economies (IMF, 2019; FSB, 2020). In Namibia, where the economy is 

highly exposed to climate variability through sectors such as agriculture, mining, and energy, 

the financial system faces increasing vulnerability to both physical and transition risks. While 

the existing literature on climate-related financial risks is expanding, it remains limited for 

developing economies and is largely focused on linear transmission mechanisms. This paper 

addresses this gap by developing climate risk scenarios tailored to the Namibian context and 

applying a Nonlinear Autoregressive Distributed Lag (NARDL) model to examine the 

asymmetric short-run and long-run effects of climate change on financial stability over the 

period 2009Q1 to 2023Q4. By decomposing climate variables into positive and negative 

shocks, the paper contributes novel empirical evidence on the transmission of climate risks in 

a developing economy context. While Amo-Bediako et al. (2023) employed the NARDL 
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approach in a regional panel setting compromising of 29 sub-Saharan economies and solely 

focusing on the banking sector, the current study is distinct in its country-specific application 

to Namibia and, more importantly, its broader focus on financial stability. The findings will 

strengthen the evidence base for integrating climate risk into financial regulation and 

macroprudential policy in vulnerable developing economies.  

The study's key findings are as follows. The results indicate the presence of a long run 

cointegrating relationship between climate variables and financial stability, characterised by 

significant asymmetric effects. Both increases and decreases in rainfall are found to negatively 

affect financial stability, highlighting the systemic risks posed by climate extremes such as 

floods and droughts. Temperature shocks display asymmetric effects as well, with increases in 

temperature having a more pronounced adverse impact. The asymmetric cumulative dynamic 

multipliers plots reveal that positive temperature shocks trigger volatile negative responses in 

financial stability up to the mid-horizon, before gradually stabilising, while negative 

temperature shocks exert more muted but persistent positive effects. In terms of rainfall, the 

plot confirms an overall negative impact on financial stability, regardless of the direction of the 

shock. 

Contrary to the climate transition risk theory, particularly those emphasized by the 

NGFS (2020), the results indicate that increases in CO2 emissions are associated with 

improvements in financial stability. This outcome likely reflects short-term economic 

expansion driven by high-emission activities such as industrial output and energy consumption, 

which may temporarily support credit growth, asset valuations, and profitability. The dynamic 

multiplier plots reinforce this pattern, showing that positive CO2 shocks consistently produce 

stronger and more persistent improvements in the financial stability index than negative shocks. 

However, this apparent stability may conceal long-term vulnerabilities, as prolonged exposure 

to high-emission trajectories increases susceptibility to future policy shifts, stranded asset risks, 

and abrupt market repricing, all central to the transition risk narrative. Overall, the findings 

highlight the complex and time-varying nature of climate-finance linkages and underscore the 

urgency of integrating forward-looking climate risk assessments into macroprudential 

regulation, financial supervision, and early warning frameworks. 

The remainder of this paper is organised as follows. Section 2 explores key stylized 

facts that highlight the nature and scope of climate-related risks in Namibia. Section 3 

synthesizes the existing literature relevant to these risks. Section 4 introduces the empirical 

framework adopted for the analysis. In Section 5, the variables and data sources are described 

in detail. Section 6 presents the estimation results along with an interpretation of the key 
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findings. The paper concludes in Section 7, offering a summary of insights and related policy 

recommendations.  

2. Climate related risk stylized facts in Namibia 
Namibia’s climate change is characterised by a distinct upward trend in temperature as depicted 

in Figure 1. The mean annual temperature in Namibia has remained broadly unchanged over 

the years, hovering around 20.4 degrees Celsius. In this regard, the mean annual temperature 

reached its highest level of 21.0 degrees Celsius in 2015 and has been drifting downwards since 

then, reporting an average of 20.2 degrees Celsius during 2022. However, temperature is 

projected to increase by an average of 0.6 degrees Celsius to 1.8 degrees Celsius between 2020 

and 2039 (World Bank, 2021). This sort of increase in temperature is likely to affect the 

agricultural sector, particularly crop and livestock production, which will ultimately impact the 

country’s GDP.  

Figure 1: Annual temperature 1990 – 2022 

 
Source: World Bank 

Precipitation levels in Namibia have been erratic, with variable rainfall patterns over the years. 

The accumulated annual rainfall stands at a modest 4890mm over the period 2000 to 2023, 

exhibiting considerable diversity across the country (Figure 2). Rainfall levels range from 

750mm in the northeast to less than 110mm in the southwest and coastal areas. Such disparities 

in precipitation have increased extreme weather phenomena, including droughts and floods, 

which pose substantial pressure on pressure on Namibia’s socio-economic development. The 

climatic conditions of Namibia, particularly rainfall and temperature, are notably influenced by 

 19,4

 19,6

 19,8

 20,0

 20,2

 20,4

 20,6

 20,8

 21,0

 21,2

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

D
eg

re
es

 C
el

si
us



6 

the El Niño–Southern Oscillation (ENSO)2 effect. During El Niño episodes, rainfall tends to be 

below average, exacerbating the challenges faced by the country (World Bank, 2021).  

Figure 2: Annual Rainfall level 

 
Source: Climate Hazards Group Infrared Precipitation (CHIRP) 

Although carbon emission levels have increased over the years, Namibia remains a net carbon 

sink according to Climate Analytics. Namibia’s carbon emission levels have tripled, increasing 

from 1.1 million metric tons of carbon dioxide in 1990 to 3.9 million metric tons in 2022 (Figure 

3). However, Namibia is a net carbon sink with a negligible contribution accounting for less 

than 0.01 percent of global emissions. Nevertheless, although current emission levels are 

comparatively low by global standards, they are on an upward trajectory and are projected to 

reach 90.713 Mt CO2e in 2030 under the business-as-usual scenario3 (Government of Namibia 

(GRN), 2023). The Agriculture, Forestry, and Other Land Use (AFOLU) sector is the 

predominant source of greenhouse gas emissions in Namibia, accounting for approximately 

81.5 percent of total national emissions. This is primarily due to fertilizer application, fossil 

fuel use, and the open burning of agricultural residues. The transport and energy sectors follow, 

contributing around 8.3 percent (Figure 4). In line with the Paris Agreement, Namibia’s 

Nationally Determined Contribution (NDC) under the United Nations Framework Convention 

on Climate Change outlines mitigation commitments across key sectors, including AFOLU, 

energy, and industrial processes and product use. These efforts are complemented by the 
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promotion of climate-smart technologies, such as renewable energy, sustainable energy 

systems, and improved waste management practices (GRN, 2023).   

Figure 3: Annual CO2 emissions 

 
Source: Climate Watch (2023) 

Namibia has committed to reducing emissions, despite its low levels of greenhouse gas 

emissions. In this regard, Namibia aims to mitigate a total of 11.902 Mt CO2 e, comprised of a 

7.669 Mt CO2 e reduction in projected emissions and an additional 4.233 Mt CO2 e from 

enhanced removals (GRN, 2023). Key sectoral interventions include the expansion of 

renewable and sustainable energy sources, the implementation of improved waste management 

technologies, the promotion of low-carbon transport systems, and the adoption of climate-smart 

practices (GRN, 2023).  

Figure 4: Greenhouse gas emissions by sector 

Source: Climate Watch 
Namibia’s sectoral loan distribution is centred on the individual sub-sector. The concentration 

of commercial bank lending is mainly geared toward the individual sub-sector, accounting for 

an average of 42.1 percent for the period 2019-2023 (Table 2). It is important to note that in the 

individual sub-sector, mortgage advances account for over 60 percent of total credit advanced 
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to the sub-sector. These mortgage advances are exposed to climate change through physical 

risks such as wildfires and floods and may have an impact on property values. Over the years, 

banks have gradually increased their credit allocation to the agriculture sector, rising from an 

average of 3.0 percent during 2004–2008 to 4.9 percent between 2019 and 2023. Although the 

proportion of credit extended to agriculture remains relatively modest, the sector continues to 

serve as the primary source of staple food production and sustains the livelihoods of many rural 

communities in Namibia.  

Agriculture remains a fundamental component of Namibia’s economy and serves as a 

key foundation for agri-based industries. In 2023, the sector contributed approximately 7 

percent to Namibia’s GDP. It is closely integrated with other vital sectors such as 

manufacturing, trade, tourism, and transport through both input and output linkages (GRN, 

2023). The banking sector may face financial exposure through its lending to households and 

businesses that are dependent on agricultural activity. Climate-related physical risks, including 

prolonged droughts and erratic rainfall, can reduce agricultural output and consequently 

undermine the financial positions of borrowers. This impact may be direct through diminished 

production and income levels, or indirect through broader macroeconomic effects such as lower 

GDP growth. As a result, credit risk may increase due to higher default rates, declining asset 

values, reduced availability of funding, and increased reliance on existing credit facilities (Bank 

of Namibia (BoN), 2024). In addition, physical damage to collateral assets resulting from 

extreme weather events can elevate risks associated with collateralised lending (European 

Systemic Risk Board, 2021).  

Table 2: Bank Lending in Namibia per sector (Percentage Share) 
 2004-2008 2009-2013 2014-2018 2019-2023 

Agriculture, hunting & forestry 3.0 3.8 4.1 4.9 
Fishing 3.8 2.0 0.8 1.7 
Mining & quarrying 1.6 1.6 1.9 1.8 
Manufacturing 2.4 2.4 2.2 2.9 
Construction 2.6 2.7 4.4 3.6 
Electricity, oil, gas & water 0.6 0.6 1.1 2.9 
Trade & accommodation 5.4 15.5 18.5 7.5 
Transport, storage & communication 2.3 2.3 1.5 2.1 
Finance & insurance 6.2 3.8 4.1 7.4 
Real estate & Business services 9.5 14.6 6.3 6.9 
Government services 2.5 1.3 3.0 4.4 
Individuals 54.3 46.9 43.3 42.1 
Other 5.7 2.4 2.4 4.7 

Source: BoN 

Financing needs for climate change mitigation have increased globally, particularly for 

emerging and developing economies (EMDEs). It is estimated that in the EMDEs, climate 
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mitigation investment needs are expected to increase from US$0.3 trillion of total investment 

needs in 2020 to around US$2.1 trillion of the total US$17.2 trillion investment needs in 2030 

(GFSR, 2023). Furthermore, private finance is critical for EMDEs to meet their climate 

investment requirements for both mitigation and adaptation, as public investments will not be 

sufficient to meet climate investment needs (GFSR, 2023). In Namibia, the Green, Social and 

Sustainability (GSS) bond issuance by the banking sector has increased from a value of N$66.6 

million observed in 2018 to around N$1.2 billion at the end of 2023. Nonetheless, there is a 

pressing need to scale up both public and private climate finance to achieve the targets set out 

in the NDC. The financial sector is anticipated to play a critical role in mobilising and directing 

investments toward sustainable development and climate-resilient initiatives. As indicated by 

GRN (2023), the estimated financial resources required for the implementation of climate 

mitigation and adaptation measures are around USD15.1 billion, of which USD13.6 billion (90 

percent) is to be sourced internationally, implying that the remaining USD1.5 billion will be 

funded domestically through various initiatives such as the Environmental Investment Fund.  

3. Literature Review 

3.1 Theoretical Literature 

Physical and transition risks constitute a key theoretical framework for analysing the impact of 

climate change on financial stability. Physical risks directly affect infrastructure and economic 

assets as a result of climate-related phenomena, including temperature fluctuations, a rise in sea 

levels, and extreme weather. Conversely, transition risks are associated with the shift to a low-

carbon economy, including policy changes, technological developments, and shifts in consumer 

preferences (NGFS, 2019). These risks can lead to stranded assets, asset revaluations, and 

sudden changes in market conditions (Carney, 2015). According to Fabris (2020), the key 

problem is that the financial system generally considers these risks in the short run, whereas 

transition risks tend to materialise in the long run, thus creating a mismatch. Figure 5 below 

demonstrates in detail how physical and transition risks can affect the financial system. 
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Figure 5: Potential financial stability risks associated with climate change 

 
Source: NGFS 

 
3.2 Empirical Literature 

Nur et al. (2023) conducted an empirical investigation into how climate related risks influence 

both financial access and stability within G20 economies. Using a panel dataset spanning from 

2006 to 2017, the authors applied a fixed effects model that accounts for variations across 

countries and potential heterogeneity in the relationships studied. Climate risk was proxied 

using the Global Climate Risk Index (CRI) developed by German watch. The study's results 

demonstrate that heightened climate risks significantly constrain financial access, while efforts 

to reduce such risks appear to facilitate improved access to financial services. Conversely, the 

analysis found no statistically significant link between climate risk and financial fragility 

among G20 nations. The authors emphasize the importance of integrating climate risk 

considerations into financial regulatory frameworks. They further argue that, in the pursuit of a 

low-carbon transition, policymakers must ensure that financial resource distribution does not 

exacerbate environmental harm. 

The impact of climate risk on financial stability is more pronounced in developing and 

emerging economies than it is for developed countries. Liu et al., (2024) conducted panel 

analysis on yearly data sets for 53 countries ranging from developed to developing and 

emerging economies to investigate the impact of climate change on financial stability. The 

global climate risk index, as constructed by the German watch, was used to measure climate 

risk, with bank specific and relevant macroeconomic variables used as covariates in the study. 

The findings of the study reveal that climate risk has a negative impact on financial stability 
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although the impact is heterogenous among countries due to different levels of economic 

development, financial development, and competition. It is noted that while macroprudential 

policies have proven effective in safeguarding financial stability in climate vulnerable 

countries, it is important to recognise that various instruments differ in their effectiveness when 

addressing climate related financial risks.  

Based on the European Central Bank (2021) climate risks pose a potential systemic 

threat to financial stability that extends beyond the individual risks faced by specific 

institutions. Due to the distinct characteristics and broad-reaching impact of climate-related 

risks, addressing them may necessitate a macroprudential approach to enhance the banking 

system's resilience and mitigate climate-related vulnerabilities. The inherent complexity, long 

time horizons, tipping points, and partial irreversibility of these risks lead to significant 

uncertainty regarding their timing and impact, making risk quantification and forward-looking 

projections particularly challenging. This uncertainty often results in the systematic 

underestimation or underpricing of climate risks, as financial markets and institutions may 

discount these risks, assuming they will only materialise in the distant future (European Central 

Bank, 2021). Furthermore, climate-related systemic risks are exacerbated by 

interconnectedness, spillover effects, and second-round consequences, which are common in 

other types of financial risks as well. Since these systemic dimensions are typically not captured 

by banks’ individual risk management strategies, a combination of microprudential and 

macroprudential measures, including enhanced disclosure requirements, capital-based policies, 

and climate stress-testing, is necessary to maintain financial stability (European Central Bank, 

2021).  

Noth and Schüwer (2023) concluded that natural disasters matter for bank stability. The 

study adopted the fixed effects Ordinary Least Squares (OLS) regression model on 6136 US 

banks over the period 1994-2012 to analyse the natural disaster and bank stability in the US 

financial system. The findings of the paper reveal that weather-related natural disasters 

significantly weaken the stability of banks in affected regions. In the short term, it is noted that 

due to natural disasters, the banks’ z-scores decreased, probabilities of default increased, non-

performing assets ratios and foreclosure ratios increased, and the return on assets and equity 

ratios decreased. Furthermore, the results also show that the negative effects of weather-related 

disasters die out after some years if no further disasters occur in the process.  

Diallo et al., (2023) examined the causal relationship between climate risk and financial 

stress in 15 Economic Community of West African States (ECOWAS) over the period 2000-

2019. Employing the Multivariate Threshold Autoregressive Vector model (MTVAR) to 
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estimate this relationship, the empirical evidence strongly supports the non-linear relationship 

between climate risk and financial stress. Specifically, the findings of the study revealed the 

existence of an optimal temperature threshold, below and above which a complex interplay 

occurs between climate risk and financial stress.  

Amo-Bediako et al., (2023) assessed how climate change impacts the banking systems' 

resilience in 29 Sub-Saharan African (SAA) economies, employing a two-step empirical 

approach. First, a Generalized Auto-Regressive Conditional Heteroskedascity (GARCH) model 

is used to forecast climate change variables. Thereafter, a panel ARDL is estimated for the 

period 1996-2017. The study found that despite a temperature shock, the SSA banking system 

maintained its resilience in the long run. In contrast, the banking system does not maintain its 

resilience when faced with precipitation and greenhouse gas shocks in the long run. The short-

term impact indicates that the banking systems in SSA are resilient to only precipitation shocks. 

Based on these findings, the study advocates for robust climate related stress testing and the 

formulation of proactive strategies and risk management frameworks to address emerging 

climate related financial vulnerabilities. In addition to ensuring long-term financial stability and 

confidence, good and efficient macroeconomic policy creation and execution require a 

thorough grasp of the factors that shape a country's financial sector, thus making research 

tailored to individual nations essential.  

Dafermos et al., (2018) found that climate change is likely to increase the rate of default 

on corporate loans, which could harm the stability of the banking system. This would be after 

eroding the capital of firms and reducing their profitability and liquidity. To reach this 

conclusion, the paper examined climate change, financial stability, and monetary policy using 

a stock-flow-fund ecological macroeconomic model. The model is estimated and calibrated 

using global data and simulations conducted for the period 2016–2120. The findings of the 

study further highlight that climate change could lead to a reallocation of portfolios which will 

result in a gradual decline in the prices of corporate bonds. Thus, revealing that climate-induced 

financial instability might adversely affect the credit intermediation in the financial system.  

 Fabris (2020) developed a comprehensive nine-step framework for managing climate-

related risks and demonstrated that climate change can adversely affect the balance sheets of 

financial institutions. The study revealed that climate-related impacts raise the probability of 

credit defaults, thereby posing risks to overall financial stability. An increase in 

nonperforming loans as a result of climate disruptions can constrain lending activities within 

the financial sector, which may subsequently slow economic growth, reduce employment 

opportunities, and adversely affect social welfare.  
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Liu et al. (2021) investigated the effects of climate change on financial stability in China 

using a two-step empirical approach. Initially, they applied a vector autoregression (VAR) 

model to capture the dynamic impact of climate variables on financial stability. Subsequently, 

they employed a nonlinear autoregressive distributed lag (NARDL) model to explore the 

asymmetric and nonlinear responses of financial stability to climate shocks, based on monthly 

data spanning 2002 to 2018. Their findings reveal that both positive and negative climate shocks 

negatively affect financial stability. Notably, in the short run, positive climate shocks have a 

stronger immediate effect on financial stability compared to negative shocks; however, in the 

lagged periods, the impact of negative shocks becomes more pronounced.  

In summary, Section 3 focuses on theoretical and empirical analysis of climate change. 

Section 3.1 identifies two approaches through which climate change can affect financial 

stability. Within the empirical literature in Section 3.2, it is observed that climate change does 

have an impact on financial stability; however, country preparedness in terms of policy 

implementation concerning climate risk can determine the ability to cushion against climate 

shocks. To the best of the authors' knowledge, no empirical study has been done in the context 

of Namibia to investigate the effects of climate change on financial stability. This study 

addresses this gap by investigating the nonlinear and asymmetric effects of climate change on 

financial stability, considering both short-term and long-term dynamics. 

4. Data, model specification and method  
The paper provides new insight into the relationship between climate change and financial 

stability in Namibia by adopting a nonlinear and asymmetric analytical framework. The study 

employed a nonlinear autoregressive distributive lag (NARDL) methodology to estimate the 

asymmetric relationship between climate change and financial stability, using quarterly data 

covering the period 2009Q1 to 2023Q4 sourced from Bank of Namibia (BoN), the Namibia 

Statistics Agency (NSA), the World Bank, Climate Watch and the Climate Hazards Group 

InfraRed Precipitation with Station (CHIRPS) data (Table 3). The selection of the study period 

is guided by the availability of quarterly data on key banking sector indicators.  
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Table 3: Description of variables 
Dependent Variable: Financial Stability Index (FSI) 

     
     Variable Expected Relationship                            Source                                    
     
     Financial Market Indicators (FMI) 

Stock Market Cap to GDP +  NSX and NSA 
Government Domestic Debt to GDP -  BoN and NSA 
Interest Rate Spread -  BoN and NSA 
Financial Vulnerability Indicators (FVI)    
Ratio of current account deficits to GDP +  BoN and NSA 
Real effective exchange rate +  BoN and NSA 
Public debt to GDP ratio -  BoN and NSA 
Import cover +  BoN 
Non-government credit to total credit -  BoN 
Financial Soundness Indicators (FS)    
Return on assets +  BoN 
Liquid assets to total assets +  BoN 
Bank regulatory capital to risk-weighted assets +  BoN 
Non-performing loans to total loans -  BoN 

     Independent Variables  
Rainfall -  CHIRPS 
Carbon emissions (CO2) -  Climate Watch 
Temperature (Temp) -  World Bank 
Note: The signs reflect the expected relationship between each partitioned variable and financial stability. A positive (+) sign indicates a 
strengthen financial stability, while a negative (−) sign suggests a weakened financial stability. 
 
4.1 Measurements of Variables 

To facilitate the nonlinear and asymmetric impact of climate change on financial stability, the 

study derives the financial stability index following the study conducted by Liu, Sun and Tang 

(2021). This paper selects various indicators representing various dimensions affecting 

financial stability in Namibia. Three broad dimensions in the form of Financial Market 

Indicators, Financial Vulnerability Indicators, and Financial Soundness Indicators were 

selected (Table 3). Each dimension consists of a set of indicators that are first standardized 

using z-score normalization to account for differing units and scales. To ensure consistency in 

interpretation, all indicators that are negatively associated with financial stability (such as non-

performing loans) are inverted so that higher values uniformly indicate improved stability. 

Within each category, indicators are equally weighted to construct their respective sub-indices. 

These sub-indices are then aggregated into the overall FSI using expert-assigned weights: 25 

percent for Financial Market Indicators, 15 percent for Financial Vulnerability Indicators, and 

60 percent for Financial Soundness Indicators. This weighting reflects the relative importance 

of each dimension, with a strong emphasis on financial soundness given its role in institutional 

resilience. Furthermore, given the limited depth and activity in capital markets the authors opted 

for a higher weight to be assign for Financial Soundness Indicators. However, to validate the 

robustness of the results, an alternative specification using equal weights was also employed. 
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A higher value of the FSI indicates greater financial system stability, while a lower value signal 

increased systemic risk or vulnerability.  

Figure 6: Namibia’s Financial Stability Index 

 
Source: Authors own computation using data obtained from BoN 

 
Figure 6 above illustrates the quarterly movements of the Financial Stability Index (FSI), 

represented by the black line, alongside its decomposed sub-indices. The overall FSI remained 

broadly stable around zero for most of the sample period, reflecting a relatively resilient 

financial system. However, notable episodes of instability are evident, particularly during the 

Covid-19 pandemic (grey shaded area), when the index dipped sharply into negative territory. 

The post-pandemic period reflects gradual recovery, with the FSI sub-index being the key driver 

behind the rebound in the overall index.  

In terms of the control variables, climate change is measured by three indicators, 

namely, temperature and rainfall levels as well as carbon emissions. Following the paper by 

Odongo (2022), this study uses rainfall data measured in millimeters as well as temperature 

measured in Degrees Celsius. Theoretically, the transmission of climate change to the financial 

system is through physical and transition risks. Depending on the exposure of banks to 

households and businesses, the combined impact of the physical and transition risk results in 

losses related to market, credit, and underwriting as well as operational risks (BoN, 2023). As 

a result, lower asset valuations and debt defaults may have a negative impact on investor 

confidence and cause systemic bank losses (Batten, et al., 2016; Bovari et al., 2018; Dafermos 

et al., 2018; Fabris, 2020). Thus, there is an anticipated negative relationship between 

temperature, rainfall variability, and financial stability. A similar impact is expected for carbon 

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

20
15

Q
1

20
15

Q
2

20
15

Q
3

20
15

Q
4

20
16

Q
1

20
16

Q
2

20
16

Q
3

20
16

Q
4

20
17

Q
1

20
17

Q
2

20
17

Q
3

20
17

Q
4

20
18

Q
1

20
18

Q
2

20
18

Q
3

20
18

Q
4

20
19

Q
1

20
19

Q
2

20
19

Q
3

20
19

Q
4

20
20

Q
1

20
20

Q
2

20
20

Q
3

20
20

Q
4

20
21

Q
1

20
21

Q
2

20
21

Q
3

20
21

Q
4

20
22

Q
1

20
22

Q
2

20
22

Q
3

20
22

Q
4

20
23

Q
1

20
23

Q
2

20
23

Q
3

20
23

Q
4

In
di

ce
s

FMI FVI FS Financial Stability Index



16 

emissions, which is likely to influence the financial system through its impact on carbon tax 

and its consequent effect on business operations. It is worth noting that the data on carbon 

emissions is usually reported as tonnes of carbon. However, the figures have been recalculated 

as tonnes of carbon dioxide, thus applying a conversion factor of 3.6644. 

The descriptive statistics presented in Table 4 reveal notable differences in the 

distribution and variability of the variables. The Financial Stability Index (FSI) has a mean of 

0.05 and a standard deviation of 0.28, indicating modest variation around a relatively neutral 

average. It ranges from -0.37 to 0.64 and shows a slight right-skewness of 0.43, with a kurtosis 

of around -1.17, suggesting fewer extreme values than a normal distribution. Temperature 

(measured in Celsius) has a tight distribution, with a mean of 20.52°C and a standard deviation 

of 0.29, indicating relatively stable temperature levels across the sample spanning from 2009 

until 2023. Rainfall exhibits the highest dispersion among the variables, with a standard 

deviation of 1.64, suggesting significant variability in precipitation levels. Carbon emissions 

are relatively stable, with a mean of 13.69, a narrow range of 0.55, and a low standard deviation 

of 0.17. The negative skewness of -0.76 and negative kurtosis of -0.97 imply a distribution with 

slightly more frequent lower values and lighter tails than a normal distribution. Overall, these 

statistics highlight the relatively stable behaviour of temperature and carbon emissions, in 

contrast to the more volatile patterns observed in rainfall and financial stability. The correlation 

matrix shows that financial stability index is moderately associated with carbon emissions and 

inversely related to temperature, while rainfall exhibits weak correlations with all variables 

(Table 4).  

Table 4: Summary Statistics and Correlations 

 Mean Maximum Minimum Std dev Skewness Kurtosis 
 FSI 0.05 0.64 -0.37 0.28 0.43 -1.17 
 TEMP 20.52 21.08 20.11 0.29 0.36 -1.15 
 RAINFALL 6.14 8.55 3.46 1.64 -0.36 -1.31 
 CO2 13.69 13.87 13.32 0.17 -0.76 -0.97 
Correlations FSI TEMP RAINFALL CO2   

FSI 1      

TEMP -0.5115 1     

RAINFALL -0.0342 0.0032 1    
CO2 0.5398 -0.0276 0.0872 1   

Source: Author’s computation using R version 4.4.2. Note: FSI denotes financial stability index; Temp signifies the temperature; Rainfall 
denotes the log of rainfall; CO2 represents the log of the carbon emission. 
Prior to estimating the empirical model, the Augmented Dickey-Fuller (ADF) and Dickey-

Fuller Generalized Least Squares (DF-GLS) unit root tests were conducted to ascertain the 

 
4 This is the conversion factor recommended by the Global Carbon Project. It comes from the fact that an average 
CO2 molecule has a mass 3.664 times that of a carbon atom.  
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variables order of integration. The unit root test results presented in Table 5 indicate that all the 

variables are non-stationary at in levels, however, becoming stationary after first differencing. 

This implies that all variables are integrated of order one, I(1). As a result, the NARDL 

estimating method has been used to estimate asymmetric effects of both the long-run and short-

run coefficients, which is a practical consequence of the observed mixed order of integration. 

Table 5: Unit Root Test Results 

 ADF Test DF-GLS 
Order of 

integration 

Variables Levels First diff 5% CV Levels First diff 5% CV 

 
 
Decision 

FSI -1.3314 -3.6636** -3.4639 -1.5123 -5.4616*** -3.0300 
 
I(1) 

TEMP -2.4278 -4.4314***  -3.4639 -2.1695 -4.1574*** -3.0300 
 
I(1) 

RAINFALL -2.4880 -5.9739*** -3.4639 -1.7077 -3.9521*** -3.0300 
 
I(1) 

 CO2 -1.4565 -6.1679***  -3.4639 -1.1969 -6.7957*** -3.0300 
 
I(1) 

       
 

Note: ***, **, * denotes significance at 1%, 5%, and 10% level, respectively. CV stands for critical values. 

4.2 Model specification 

This study adopts the nonlinear autoregressive distributed lag (NARDL) approach as outlined 

by Liu, Sun, and Tang (2021), presented in Equation 1. The NARDL framework offers several 

advantages over traditional linear specifications. One of its key strengths is its flexibility 

regarding the integration order of variables, provided none are integrated beyond first order. 

Additionally, it is well-suited for use with small sample sizes, making it a robust option for 

empirical analysis. Importantly, the model allows for the simultaneous estimation of both long-

run and short-run asymmetries, facilitating a straightforward approach to testing for symmetry 

across different time horizons. 

𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡,𝐶𝐶𝐶𝐶2𝑡𝑡,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡)……...…(1) 

Where: 𝐹𝐹𝐹𝐹𝑡𝑡 designates the financial stability indicator as explained under the measurement of 

variables. 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 represents rainfall while 𝐶𝐶𝐶𝐶2𝑡𝑡 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 denotes carbon emissions and 

temperature, respectively. To investigate the asymmetric relationship between climate change 

and financial stability in Namibia, Equation 1 is adapted to capture the differential effects of 

climate variables on financial stability. This adaptation involves decomposing the explanatory 

variables into their positive and negative partial sum components, following the methodology 

proposed by Shin et al. (2014), thereby allowing for the identification of asymmetric dynamic 

responses. The independent variables in the model are separated into their respective partial 

sums, capturing both positive and negative changes, as outlined below:  
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𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡+ = �∆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖+
𝑡𝑡

𝑡𝑡=1

= �max(∆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖+, 0)
𝑡𝑡

𝑡𝑡=1

 

𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡− = �∆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖−
𝑡𝑡

𝑡𝑡=1

= �𝑚𝑚𝑚𝑚𝑚𝑚(∆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖−, 0)
𝑡𝑡

𝑡𝑡=1

 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2𝑡𝑡+ = �∆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2𝑖𝑖+
𝑡𝑡

𝑡𝑡=1

= �𝑚𝑚𝑚𝑚𝑚𝑚(∆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2𝑖𝑖+, 0)
𝑡𝑡

𝑡𝑡=1

 

𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶2𝑡𝑡− = �∆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2𝑖𝑖−
𝑡𝑡

𝑡𝑡=1

= �𝑚𝑚𝑚𝑚𝑚𝑚(∆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2𝑖𝑖−, 0)
𝑡𝑡

𝑡𝑡=1

 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡+ = �∆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖+
𝑡𝑡

𝑡𝑡=1

= �𝑚𝑚𝑚𝑚𝑚𝑚(∆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖+, 0)
𝑡𝑡

𝑡𝑡=1

 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡− = ∑ ∆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖−𝑡𝑡
𝑡𝑡=1 = ∑ 𝑚𝑚𝑚𝑚𝑚𝑚(∆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖−, 0)𝑡𝑡

𝑡𝑡=1 …(3) 

The modified long run form of Equation 1 is given as Equation 4 below: 

𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡 = 𝛿𝛿0 + 𝛿𝛿1𝐹𝐹𝐹𝐹𝑡𝑡−𝑖𝑖 + 𝛿𝛿2+𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−𝑖𝑖+ + 𝛿𝛿2−𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−𝑖𝑖− + 𝛿𝛿3+𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶2𝑡𝑡−𝑖𝑖+ + 𝛿𝛿3−𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶2𝑡𝑡−𝑖𝑖− +

𝛿𝛿4+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡−𝑖𝑖+ + 𝛿𝛿4−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡−𝑖𝑖− + 𝑒𝑒𝑡𝑡)………(4) 

In this specification, the superscripts denote the partial sums of positive and negative changes 

in the explanatory variables. The summation terms, ∑ 𝛿𝛿4
𝑖𝑖=0 , represent the long run coefficients 

to be estimated. Consistent with the main objective of this study, Equation 2 is finally 

transformed fully into a NARDL model capturing both short and long run dynamics taking the 

form: 

∆𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡 = 𝛽𝛽0 + ∑ �𝛽𝛽1,𝑖𝑖∆𝐹𝐹𝐹𝐹𝑡𝑡−𝑖𝑖�
𝑝𝑝0
𝑖𝑖=1 + ∑ (𝛽𝛽2,𝑖𝑖

+ ∆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖+)𝑞𝑞2+
𝑗𝑗=0 + ∑ (𝛽𝛽2,𝑗𝑗

− ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖−)𝑞𝑞2−
𝑗𝑗=0 +

∑ (𝛽𝛽3,𝑖𝑖
+ ∆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2𝑖𝑖+)𝑞𝑞3+

𝑘𝑘=0 + ∑ (𝛽𝛽3,𝑗𝑗
− ∆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2𝑖𝑖−)𝑞𝑞3−

𝑘𝑘=0 + ∑ (𝛽𝛽4,𝑖𝑖
+ ∆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖+)𝑞𝑞4+

𝑙𝑙=0 + ∑ (𝛽𝛽4,𝑗𝑗
− ∆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖−

𝑞𝑞4−
𝑙𝑙=0 ) +

𝛿𝛿1𝐹𝐹𝐹𝐹𝑡𝑡−𝑖𝑖 + 𝛿𝛿2+𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−𝑖𝑖+ + 𝛿𝛿2−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−𝑖𝑖− + 𝛿𝛿3+𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2𝑡𝑡−𝑖𝑖+ + 𝛿𝛿3−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2𝑡𝑡−𝑖𝑖− + 𝛿𝛿4+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡−𝑖𝑖+ +

𝛿𝛿4−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡−𝑖𝑖− + 𝜀𝜀𝑡𝑡 … (5) 

Equation 5 presents the final asymmetric specification of the NARDL model applied to assess 

financial stability in the context of Namibia. In this formulation, the coefficients 𝛽𝛽 and 𝛿𝛿 

represent the short-run and long-run parameters, respectively. The long run effects of positive 

and negative shocks in the explanatory variables on financial stability are measured by �∑ 𝛿𝛿𝑖𝑖
++

𝑖𝑖=2
𝛿𝛿1

� 

and �∑ 𝛿𝛿𝑖𝑖
−−

𝑖𝑖=2
𝛿𝛿1

�, respectively.  
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Additionally, ∑ 𝑝𝑝𝑝𝑝𝑗𝑗
𝑖𝑖=1  and ∑ 𝑞𝑞𝑞𝑞𝑗𝑗

𝑖𝑖=1  represent the lag orders.  

Lastly, similar to the linear ARDL method, Shin et al., (2014) introduce the bound test for 

identifying asymmetrical cointegration in the long run. The null hypothesis states that the effect 

is symmetrical in the long run if the below holds: 

𝐻𝐻0 = 𝛿𝛿0 = 𝛿𝛿1+ = 𝛿𝛿1− = 𝛿𝛿2+ = 𝛿𝛿2− = 𝛿𝛿3+ = 𝛿𝛿3− = 𝛿𝛿4+ = 𝛿𝛿4− = 0 

In contrast, the alternative hypothesis posits the existence of a long-run asymmetric 

relationship, which holds true if the following condition is satisfied: 

𝐻𝐻1 = 𝛿𝛿0 ≠ 𝛿𝛿1+ ≠ 𝛿𝛿1− ≠ 𝛿𝛿2+ ≠ 𝛿𝛿2− ≠ 𝛿𝛿3+ ≠ 𝛿𝛿3− ≠ 𝛿𝛿4+ ≠ 𝛿𝛿4− ≠ 0 

The F statistics and critical values are also used in the NARDL to reach a conclusion about H0. 

If H0 is rejected, it indicates that there is a long-term nonlinear equilibrium relationship between 

climate change and financial stability. In order to ensure the fitness and stability of the estimated 

model, it is typical, when dealing with time-series models, such as the ARDL/NARDL, to carry 

out numerous diagnostic tests (Pesaran and Shin, 1999). Therefore, this paper includes a number 

of diagnostic tests, including the Lagrange multiplier test for serial correlation, Wald test for 

testing asymmetry, and functional form. The cumulative sum of recursive residuals (CUSUM) 

and cumulative sum of squares (CUSUMSQ) plots are also used to verify model stability.  

5. Results 
5.1 Nonlinear Autoregressive Distributed Lag (NARDL) 

Prior to estimating the NARDL model, the unit root properties of the series were conducted to 

determine the order of integration of the variables. The unit root test results show that all 

variables are integrated of order one, I(1). Given this, the NARDL framework remains 

appropriate for the analysis, as it accommodates I(1) variables provided none of the series is 

integrated of order two, I(2), which would violate the model’s assumptions. Before proceeding 

with the bounds test for cointegration, it is essential to identify the appropriate lag length for 

the model. As noted by Yesigat et al. (2018), lag selection is particularly important in time 

series analysis, given that economic variables often exhibit delayed responses. Appropriately 

chosen lags help capture dynamic adjustments and mitigate potential autocorrelation in the 

residuals. Based on the AIC, the optimal lag length selection for the NARDL model is 

(1,1,1,2,2,0,1). 

After determining the optimal lag length, the bounds testing approach was applied to 

examine the presence of cointegration among the variables. The results of the bounds test 

presented in Table 6 indicate the presence of a long-term nonlinear relationship between climate 

variables (temperature, rainfall, and CO2 emissions) and financial stability as proxied by the 
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Financial Stability Index. This is evident from the F-statistics value, which exceeds the upper 

and lower critical bounds at the 5 percent level of significance, as specified by Pesaran et al 

(2001).  

Table 6: Bounds Test Results for Financial Stability Climate Nexus Model 

Test statistics Value Lag   

F-statistic 5.9966*** 2  

Bounds Test Critical Value: Case 5 – Unrestricted Intercept and Unrestricted Trend 

Significance level Lower bound Upper bound  

10% 2.724 3.893  

K = 6 5% 3.197 4.460 

1% 4.230 5.713  

Source: Authors’ computation using eviews 
Note: ***,**,* indicates significance at the 1%,5%,10% level. 
 
In addition, the study applies Wald-type coefficient symmetry tests to assess both the long-run 

and short-run asymmetries between the explanatory variables and the financial stability index. 

As presented in Table 7, the null hypothesis assumes that positive and negative changes in each 

climate-related variable (CO2 emissions, rainfall, and temperature) exert symmetric effects on 

financial stability index. The results reveal that the null hypothesis is strongly rejected for CO2 

and rainfall, suggesting significant asymmetric transmission effects. This implies that increases 

and decreases in these variables impact financial stability index differently. In contrast, 

temperature shows no statistically significant asymmetry in the long run, indicating that its 

effects are largely symmetric. However, the short-run test results show that temperature exhibits 

a significant asymmetric effect, while rainfall displays weak evidence of asymmetry, significant 

at the 10 percent level.  

Table 7: Results of the Symmetric test 

Variable F-statistics P-value Decision (is there asymmetry?) 

Long run 

CO2 9.7560*** 0.0040 Yes 

Rainfall 7.7746*** 0.0093 Yes 

Temperature 24.9499 2.5722 No 

Short run 

CO2 9.0096*** 0.0047 Yes 

Rainfall 3.5553* 0.0668 Yes 

Temperature 4.4009** 0.0424 Yes 

Source: Authors’ computation using EViews 
Note: ***,**,* indicates significance at the 1%,5%,10% level. 
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Following the confirmation of a nonlinear relationship between climate variables and financial 

stability, the study proceeds to estimate the short-run and long-run coefficients within the 

NARDL framework. The estimation results, presented in Table 8, are based on the NARDL 

(1,1,1,2,2,0,1) specification, which reflects the optimal lag structure determined for the 

variables included in the model. Overall, the covariates accord with the a priori expectations as 

highlighted earlier on. 

Table 8: Asymmetric short run and long run regression results 
Dependent Variable: Financial Stability Index (FSI) 

Short run results: D (A_FSI) 
     
     Variable Coefficient Std. Error t-Statistic Prob.    
     
     C -0.228809 0.058254 -3.927758 0.0003 

∆𝐿𝐿𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 -0.032192 0.019092 -1.686111 0.0984 
∆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 0.088305 0.027305 3.233999 0.0022 
∆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 -1.722644 0.672226 -2.562596 0.0137 
∆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡−1 2.520205 0.742405 3.394652 0.0014 
∆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 -2.104650 0.657738 -3.199829 0.0025 
∆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡−1 1.930931 0.639247 3.020632 0.0041 
∆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2_𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 1.220190 0.894046 1.364795 0.1788 

𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−1 -0.749884 0.108103 -6.936782 0.0000 
     Long run results 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝑝𝑝𝑝𝑝𝑝𝑝 -0.202898 0.062188 -3.262643 0.0019 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝑛𝑛𝑛𝑛𝑛𝑛 0.210466 0.066193 3.179571 0.0025 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑝𝑝𝑝𝑝𝑝𝑝 -2.626644 0.474781 -5.532329 0.0000 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑛𝑛𝑛𝑛𝑛𝑛 -0.358870 0.293587 -1.222360 0.2272 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2_𝑝𝑝𝑝𝑝𝑝𝑝 1.536241 0.473523 3.244277 0.0020 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2_𝑛𝑛𝑛𝑛𝑛𝑛 -0.504565 0.620851 -0.812698 0.4202 

     
Diagnostic Tests Test Statistic Probability Value 
Normality 4.2722 0.1181 

Heteroscedasticity 1.2201 0.2964 

ARCH LM (𝜒𝜒2) 1.2727 0.2642 

Serial Correlation (Breusch-Godfrey LM Test) 2.3110 0.1125 

RAMSEY 0.1373 0.7130 

CUSUM Stable  

CUSUMSQ Stable  

Source: Authors’ computation using EViews 
Note: ***,**,* indicate significance at the 1%,5%,10% level. 

The findings indicate that temperature exerts a negative asymmetric effect on financial stability, 

consistent with the empirical evidence reported by Liu et al. (2021). In this regard, Table 8 

indicates that a 1°C increase in average temperature leads to a decline of approximately 2.63 

index points in the financial stability index, suggesting that rising temperatures significantly 

weaken financial resilience. Conversely, a 1°C decline in average temperature increases the 

index by 0.36 points, implying that colder-than-usual temperatures improve financial stability 



22 

resilience, ceteris paribus. This suggests that lower temperatures are more beneficial to financial 

stability than rising temperatures. One possible explanation is improved business conditions in 

sectors such as agriculture, where cooler temperatures help mitigate the risks associated with 

extreme heat. A decline in temperature can enhance crop-growing conditions by improving soil 

moisture retention and reducing heat stress ultimately boosting agricultural productivity. As a 

result, this eases financial stress for farmers and lenders actively involved in agricultural 

financing and related business ventures, contributing to resilient financial stability.  

As shown in Table 8, the short-run results indicate that all four coefficients of 

temperature have a statistically significant impact on financial stability in Namibia. Both 

positive and negative shocks to temperature in the current period exhibit similar directional 

effects as their long-run counterparts, although the magnitude of these short-run impacts is 

comparatively lower. At the first lag, a clear asymmetry is observed. A positive shock to 

temperature increases the financial stability index by approximately 2.52 points, while a 

negative shock at the same lag decreases the index by about 1.93 points, holding other factors 

constant. The positive and significant coefficient on the first lag of a negative temperature shock 

supports the findings of Liu et al. (2021) and aligns with a priori expectations. Importantly, 

unlike the long-run case, the null hypothesis of coefficient symmetry is rejected in the short run 

based on the Wald test. This suggests that positive and negative temperature shocks exert 

asymmetric effects on financial stability even over shorter horizons. 

In terms of CO2 emissions, the results indicate that a positive shock to CO2 emissions 

does have a significant positive effect on the financial stability index. More specifically, a 1 

percent increase in CO2 emissions leads to a 0.0154 index point increase in the financial 

stability index. These findings on carbon emissions accord with the findings by Agbloyor et al. 

(2021). The findings show that an increase in CO2 through increased activity in the energy use 

industry, agriculture, and land use can result in a resilient financial system. Improved industrial 

activity leads to an enhanced financial stability index as financial sectors' profitability improves 

and supports lower default risks. Similarly, although statistically insignificant, a negative shock 

to CO2 emissions is associated with an improvement in financial stability. Specifically, a 1 

percent decline in CO2 emissions increases the index by 0.005 points, suggesting that reduced 

emissions may also contribute to a more resilient financial system, possibly through increased 

focus on green financing and reduced environmental risks. These findings highlight the 

complex interplay between carbon-intensive sectors and financial stability and underscore the 

need to balance economic growth with environmental sustainability. What is encouraging about 



23 

the results on CO2 emissions is the fact that Namibia is a net carbon sink with a negligible 

contribution to global emissions.  

Although statistically insignificant, the short-run results for CO2 emissions indicate that 

the model selected only the negative partial sums, with a coefficient sign opposite to that 

observed in the long run. Nonetheless, consistent with the long-run findings, the null hypothesis 

of symmetry is rejected in the short run based on the Wald test, as shown in Table 7.  

The results on rainfall patterns indicate that a positive shock to rainfall levels reduces the 

financial stability index, implying a weakening of financial system resilience. This finding 

aligns with studies such as Amo-Bediako et al. (2023), which highlight the adverse effects of 

extreme weather events, including floods, on the sub-Saharan banking system stability. What 

these results mean for Namibia is that higher rainfall may be associated with increased risks of 

flooding, which can disrupt economic activities, particularly in agriculture, a key sector of the 

economy. Floods can lead to crop failures, damage to infrastructure, and higher insurance 

claims, all of which strain financial institutions by reducing loan repayment capacity and 

increasing non-performing loans. These results underscore the importance of climate adaptation 

measures, such as improved flood management systems and diversification of economic 

activities, to mitigate the adverse impacts of extreme rainfall on financial stability.  

On the other hand, a negative shock to rainfall patterns significantly reduces the 

financial stability index, an expected outcome given Namibia’s high vulnerability to recurrent 

droughts. Namibia is highly susceptible to recurrent drought episodes, with the recent drought, 

especially those experienced since 2019, being ranked among the worst in recent history. The 

severity of these conditions has prompted the Bank of Namibia to issue a determination to 

provide drought relief for the agricultural sector during 2024. Prolonged droughts adversely 

impact agricultural productivity, reduce household incomes, and increase credit risk for banks, 

particularly those with significant exposure to the agricultural sector. These findings highlight 

the vulnerability of Namibia’s financial system to climate-related shocks, reinforcing the need 

for policies that enhance resilience, such as climate risk stress testing and financial sector 

support mechanisms during extreme weather events.  

Over the short run, the coefficients of positive and negative shocks in rainfall behave in 

a similar fashion to their long run counterparts, although the magnitude of the impact is notably 

lower. Contrary to the long run, the null hypothesis of symmetry from the Wald test cannot be 

rejected at the 5 percent level of significance in the short run, suggesting that the short run 

coefficients of positive and negative partial sums of rainfall are statistically symmetric. This 

short-run symmetry may reflect the lagged economic impacts of slow-onset hazards like 
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droughts, as well as the limited immediate transmission of fast-onset shocks such as floods into 

financial system dynamics.  

To assess the statistical adequacy of the model, a series of diagnostic tests were 

conducted. As shown in Table 8, the model satisfies key diagnostic criteria, with test statistics 

yielding p-values greater than the 5 percent threshold. These results suggest that the residuals 

exhibit normality, homoscedasticity, and no serial correlation, thereby confirming the model’s 

appropriate specification.  

To assess the structural stability of the estimated NARDL model, both the cumulative 

sum (CUSUM) and cumulative sum of squares (CUSUMSQ) plots were employed. As 

illustrated in Figure 7, the plots remain within the 5 percent significance boundaries, indicating 

that the model is structurally stable over the sample period.  

 

Figure 7: CUSUM and CUSUMSQ plots of recursive residuals 

 
Source: Authors own computation using Eviews 

To gain further insight into the adjustment dynamics, the study examines the asymmetric 

cumulative dynamic multipliers derived from the estimated NARDL model selected based on 

the lowest Akaike Information Criterion (AIC). These multipliers trace the evolution of the 

financial stability index in response to positive and negative shocks to CO2 emissions, rainfall, 

and temperature over a 15-quarter forecast horizon. The trajectories of the responses are 

depicted using distinct color-coded lines, where the blue and yellow lines represent positive and 

negative climate shocks, respectively. The divergence between these paths illustrates the extent 

of asymmetry in the adjustment process. In addition, the red line highlights the net difference 

between the two responses, while the surrounding shaded grey areas indicate the 95 percent 

bootstrap confidence intervals, as presented in Figure 8. 
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As shown in Figure 8, all the graphs validate the significant asymmetric response of FSI to 

shocks in CO2, rainfall, and temperature. The empirical findings show that the cumulative 

effects of easing temperature or a negative change in temperature dominate the cumulative 

effects of a positive change in temperature. In particular, the positive temperature shock has a 

very volatile negative effect on FSI until period 6, which stabilises after period 10. However, 

the negative temperature shock has the greatest muted positive effects on FSI throughout the 

horizon. In terms of rainfall, an overall negative relationship is observed between shocks in 

rainfall and FSI. In contrast, CO2 exhibits an overall positive association with financial 

stability, primarily driven by the stronger influence of positive shocks compared to the effects 

of negative shocks.  

 To assess the robustness of the estimation results, the model was re-estimated using an 

FSI constructed by applying equal weights to the three broad categories originally used in its 

compilation. The findings remain broadly consistent with the baseline results, reinforcing the 

validity of the main conclusions. However, two notable differences emerged. First, in the long 

run, the coefficient on the negative CO2 shock, though still statistically insignificant, turned 

positive, implying that lower emissions are associated with a decline in the financial stability 

index. This result is contrary to the transition risk theory, which suggests that a long-term 

reduction in emissions should strengthen financial system resilience by mitigating climate-

related risks. Second, the previously insignificant long-run coefficient on negative temperature 

shock became statistically significant, while retaining the same sign but with a smaller 

magnitude. This finding highlights the importance of temperature-driven physical risks even 

under alternative FSI constructions. In the short run, the results are largely unchanged, except 

that CO2 was excluded from the final specification due to a lack of statistical relevance. These 

outcomes affirm the robustness of the primary findings to alternative specifications of the FSI. 

The full set of robustness results is reported in Appendix Table A1.  

  



26 

Figure 8: Cumulative effects of temperature, rainfall, and CO2 on FSI in Namibia 

 

 
 

Source: Authors own computation using Eviews 
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6. Conclusion and Recommendations  
Challenges posed by climate change have become one of the greatest concerns in recent years, 

particularly its impact on financial stability. This paper uses the NARDL approach to 

cointegration to examine the potential impact of climate change on financial stability in 

Namibia using quarterly time series data from the period 2009 to 2023. The study constructs a 

financial stability index (FSI) used as a proxy for financial stability. This index is used to 

empirically test the relationship of financial stability against climate variables such as CO2, 

temperature, and rainfall. The findings indicate a long-term equilibrium relationship between 

the FSI and climate-related variables. The study finds a negative asymmetric impact of 

temperature on financial stability. It also reveals that both negative and positive shocks to 

rainfall patterns reduce the financial stability index, as extreme weather conditions, whether it 

is droughts or floods, disrupt agricultural activity and strain the broader financial system. The 

study further finds that both negative and positive shocks to CO2 emissions improve the 

financial stability index, suggesting that higher emissions may be associated with increased 

economic activity, which temporarily supports financial conditions despite potential long-term 

environmental risks. 

The results of this research suggest important policy implications. Firstly, the short-term 

immediate impact of climate-related shocks highlights the importance of integrating climate-

related risks into financial institutions’ risk assessment frameworks. These frameworks should 

clearly define procedures for identifying vulnerabilities and outline response strategies for 

managing climate-related shocks. Secondly, the study recommends that financial institutions 

adopt a long-term risk monitoring and mitigation strategy. This would involve developing 

adaptive policies that allow for the gradual adjustment of portfolios and investment strategies 

in response to changes in these variables. Thirdly, financial institutions should aim to actively 

explore early warning systems that will assist in identifying and mitigating the potential 

idiosyncratic risks to their institutions stemming from systemic climate disasters. Finally, for 

fast-moving hazards, such as floods and storms, regulators should conduct climate stress testing 

to assess the resilience of the financial system stability to sudden and unpredictable climate 

events. As this work represents the first step in addressing climate risks to financial stability, 

further research is necessary in assessing the impact of climate change on specific sectors in the 

financial system, such as insurance and investment fund managers. Such efforts would ensure 

a comprehensive approach to understanding and mitigating climate-related risks across the 

entire financial system.  
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Appendix 
Table A1: Asymmetric short run and long run regression results 

Dependent Variable: Financial Stability Index (FSI) 
Short run results: D (A_FSI) 

     
     Variable Coefficient Std. Error t-Statistic Prob.    
     
     C -0.035074 0.049704 -0.705668 0.4838 

∆𝐿𝐿𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 -0.006160 0.014995 -0.410837 0.6830 
∆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 0.061703 0.022490 2.743575 0.0085 
∆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 -0.519867 0.581824 -0.893512 0.3760 
∆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡−1 2.098742 0.707085 2.968162 0.0047 
∆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 -2.447823 0.614785 -3.981593 0.0002 
∆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡−1 1.412690 0.571724 2.470928 0.0171 

𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−1 -0.746860 0.124901 -5.979636 0.0000 
     Long run results 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝑝𝑝𝑝𝑝𝑝𝑝 -0.126528 0.055676 -2.272580 0.0273 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝑛𝑛𝑛𝑛𝑛𝑛 0.188015 0.056176 3.346896 0.0015 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑝𝑝𝑝𝑝𝑝𝑝 -1.682273 0.395428 -4.254307 0.0001 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑛𝑛𝑛𝑛𝑛𝑛 -1.032363 0.264230 -3.907060 0.0003 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2_𝑝𝑝𝑝𝑝𝑝𝑝 1.883836 0.390676 4.821993 0.0000 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2_𝑛𝑛𝑛𝑛𝑛𝑛 0.192406 0.463104 0.415471 0.6795 

     
Diagnostic Tests Test Statistic Probability Value 
Normality 1.1091 0.5743 

Heteroscedasticity 0.8593 0.6049 

ARCH LM (𝜒𝜒2) 0.4001 0.5297 

Serial Correlation (Breusch-Godfrey LM Test) 0.9308 0.4026 

RAMSEY 0.1135 0.9102 

CUSUM Stable  

CUSUMSQ Stable  

Source: Authors’ computation using EViews 
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