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Abstract

Strategic market games with interim price information combine the rational expectations
concept from competitive equilibrium models under asymmetric information with Bayesian
market games (Kyle 1989; Vives 2011). In this novel class of simultaneous moves games,
the informed traders submit their linear demand-schedules to a Walrasian auctioneer after
they have observed their private signals as well as their interim price information. Because
this price information depends on the traders’ actions—which are, in turn, conditional on
this information—consistency and measurability issues arise that are absent for Bayesian
games. As a generalization of Bayesian Nash equilibria for Bayesian market games, I show
that Nash equilibria of strategic market games with interim price information may support

price-collusion between the informed traders against a liquidity trader.
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1 Introduction

I consider an asset trade economy under asymmetric information in which informed traders
receive private signals about a risky asset’s (common or private) value and there exists (noisy or
noise-free) price-inelastic demand by some liquidity trader. In competitive rational expectations
equilibrium (=REE) models (i) the informed traders know the REE price function and (ii) they
condition their demand decisions on observable interim price information. In Bayesian market
games the privately informed traders submit demand-schedules to a Walrasian auctioneer through
which they commit themselves to buy/sell the corresponding amount of the asset at the market
price that will be ex post announced by the Walrasian auctioneer. The traders thereby (i) know
the Bayesian Nash equilibrium (=BNE) price function but (ii) they do not condition the choice
of their demand-schedules on any interim price information.

This paper combines the rational expectations concept of observable interim price information
with the concept of strategic competition over linear demand-schedules from Bayesian market
games. To this purpose I construct a class of games—called strategic market games with interim
price information—in which a trader who has observed his private signal additionally observes
interim price information before he submits a linear demand-schedule to the Walrasian auctioneer.
In contrast to Bayesian market games, the strategic choice of a demand-schedule is thus not only
conditioned on the trader’s private signal but also on his interim price information.

To be precise about this difference, consider the actions and strategies for a Bayesian market
game with linear demand-schedules, denoted I'2, whereby I stay closely to the terminology and
notation used in the seminal article by Kyle (1989). An informed trader i € {1, ..., N} who has

observed his private signal §; € ©;, C R submits to the Walrasian auctioneer a demand-schedule

(mi [91] (p> 7p)pe]R (1)

with linear demand function

z; [0:] (p) = p[0:] + B10:])0; — v [0:] p (2)

such that (1) commits trader ¢ to buy/sell the respective amount x; [0;] (p) whenever the Wal-
rasian auctioneer announces the market price p. Because I restrict attention to linear demand-

schedules, the action of each agent 0; € ©; effectively amounts to the choice of admissible values



for the three functional parameters
(n[0:],810:],7[0:]) € ACR xR x Ry,

A strategy of trader i in the Bayesian market game I'® assigns to all his agents 6; some action
in A pinning down the parameter values for the linear demand function (2). Although the
trader’s demand (2) in a Bayesian market game is a function in prices p € R, these prices
are not any interim but only ex post information after the trader’s agent #; has chosen his
demand-schedule. In a Bayesian market game, the strategic choice of a demand-schedule is thus
exclusively conditioned on the information given by a trader’s private signal §; but not on any
interim price information.

Turn now to the novel concept of a strategic market game with interim price information,

denoted I'”". Instead of (1), I consider linear demand-schedules

(xi [eiaﬁiv ai] (p) >p)pe]R (3)

with
i [0, Pis i) (p) = 11[03, Pis ] + B 103, P ] 0; — v [0, D, cui] p
such that (p;, ;) € R x Ry stands for interim price information that reveals to trader i the

intercept p; and the slope «; of his linear residual demand function. The possible actions of agent

0;, Di, ;] are the same as for the Bayesian market game, i.e., all admissible parameter values

2 [91'715@',04@'] B [ei,ﬁm%‘] Y [91'715@',0%] € A

A strategy of trader i assigns now to all his agents [0;, p;, a;]—and not just to all #;,—some action
that commits trader ¢ to buy/sell in accordance with the demand-schedule (3) submitted to the
Walrasian auctioneer.

In contrast to a Bayesian market game, a strategic market game with interim price infor-
mation comes with the same “chicken-egg” problem that is shared by all rational expectations
models: What comes first, the information-based decision or the decision-based information?
Fully revealing competitive REE models typically sideline this “chicken-egg” problem by stipu-

lating an omniscient Walrasian auctioneer who offers to all traders a REE price function that



is measurable with respect to the traders’ aggregate information. But such omniscient Wal-
rasian auctioneer does not ‘explain’ anything as (i) it does not resemble any existing market
institution whereby (ii) a fully-revealing REE price function might not be incentive compati-
ble.! My preferred interpretation is that the time-sequence of information-based decisions versus
decision-based information happens for rational expectations models in some unexplained “black
box”. One can then hope that this rational expectations “black box” works as a viable modeling
shortcut for some more complex—but unmodeled—sequential situation in which traders observe
information, adjust their decisions, observe new information, newly adjust their decisions, ...,
and so forth.? Although this ‘answer’ to the “chicken-egg” problem of interim price information
is not fully satisfactory, the present paper does not go beyond it but accepts the rational expec-
tations concept of interim price information as a viable modeling short-cut for relevant real-life
situations.

The “chicken-egg” problem of rational expectations causes a consistency as well as a measur-
ability problem for the construction of a strategic market game with interim price information I'”
that is absent for a Bayesian market game I'Z. In a Bayesian market game trader i’s agent who
submits a demand-schedule is unambiguously pinned down by a move of nature; that is, if the
true state of the world happens to be w, then agent 6; (w)—corresponding to i’s private signal—
submits the demand-schedule. Because all traders’ interim price information has to be consistent
with all traders’ strategy choices in order to ensure the same market price for all traders, the sit-
uation is significantly more complex for a strategic market game with interim price information.
I will show that the agents of all traders who submit in state w their demand-schedules have to

be simultaneously pinned down as some N-tuple

([0: (W), Bi o] (W), i [o] (W)]) =y, v

—

ITo stipulate that all traders’ accept a fully revealing price function might ignore the traders’ incentives to
hide their private information through the manipulation of prices. For example, why should the owner of a bad
car in Akerlof’s (1970) lemon market reveal the low quality of his car by accepting a low price? Hellwig (1980),
basically, argues that rational expectations equilibria are only incentive compatible for large markets in which
each atomless trader has no impact on the equilibrium price. For a game-theoretic analysis of the incentive

compatibility of REE, I refer the reader to Glycopantis and Yannelis (2005).
2For recent modeling approaches which aim to shed some light on this “black box”, see Pesce, Urbinati, and

Yannelis (2024) and references therein.



whereby the traders’ interim price information p; [0] (w) , a; [0] (w) depends—in addition to the
true state w—also on their chosen strategy profile o.

Formally, the question whether all traders’ strategy choices are consistent with their interim
price information or not, is equivalent to the question of whether there exists a solution of a
system of equations over all traders’ interim price information in a given state of the world
under a given strategy profile. The solutions—if any—for this system of equations result in
an action-profile correspondence induced by a given strategy profile o. It turns out that this
correspondence induced by ¢ may or may not allow for the selection of a measurable function
for which the traders’ expected utility from strategy profile o is well-defined.? As a consequence,
there exist for I'” well-behaved versus non-well-behaved strategy-profiles such that the traders’
expected utility only exists for well-behaved strategy-profiles. This is not a problem for the
Bayesian market game because all strategy-profiles are, by construction, measurable functions
for which each traders’ expected utility is well-defined.

Due to the resolution of the “chicken-egg” problem by a consistency condition, it can be
possible for a trader to influence his own residual demand function and thereby his interim price
information through his strategy choice. Again, this is not possible in a Bayesian market game
for which a trader’s residual demand function is exclusively determined by the strategy choice
of his opponents. Therefore, a strategic market game with interim price information is not a
Bayesian game and the Nash equilibria of '’ can, in general, not be interpreted as Bayesian
Nash equilibria. My analysis of Nash equilibria for strategic market games with interim price

information comes with two main insights.

1. If a BNE of I'? satisfies a specific sufficiency condition—according to which interim price
information is irrelevant to a best response—, the corresponding BNE outcome can be
carried over to a Nash equilibrium of I'”. In particular, this sufficiency condition is satisfied
by the constant, symmetric BNE for the Bayesian market games considered in Kyle (1989)
and Vives (2011).

3Im grateful to Ulrich Horst for pointing me to the Kuratowski-Ryll-Nardzewski Selection Theorem in Alipran-
tis and Border (2006).



2. In contrast to the BNE of I'Z, there may exist Nash equilibria of I'? which support price-
collusion between the informed traders against the liquidity trader. The intuitive reason for
this economically relevant finding is straightforward: if the traders can condition their sub-
mitted demand-schedules on interim price information, they can design demand-schedules

that punish any strategies which deviate from the ‘agreed-upon’ price.

The conceptually novel part of this second main insight is that the triggering of punishing
actions happens within the simultaneous move game I'*’ for which no time-sequence of the traders’

moves is defined.

Relation to Kyle (1989) and Vives (2011)

The idea to use a trader’s residual demand function as his interim price information is inspired
by the seminal articles of Kyle (1989) and Vives (2011). To establish the existence of constant,
symmetric BNE?, Kyle (1989) and Vives (2011) use the following “irrelevance of interim price

information” argument:

Suppose that every agent could condition his action on the parameters of his resid-
ual demand function. If his optimal response is always the same action irrespective
of this interim price information, this action must also be a best response whenever

the agent does not observe any interim price information.

Importantly, neither Kyle (1989) nor Vives (2011) go beyond Bayesian market games as their
traders cannot actually observe any interim price information.

A major motivation for the models of Kyle (1989) and Vives (2011) is to compare the infor-
mativeness of their respective BNE price functions with the informativeness of the REE price

functions from competitive REE models. The discussion of the informativeness of equilibrium

4Kyle (1989) establishes existence of constant, symmetric BNE within a CARA-Gaussian, common value
model. Existence of such BNE fails in Kyle’s model if the demand of the liquidity trader is noise-free. Vives
(2011) establishes existence of constant, symmetric BNE within a risk-neutral, Gaussian framework for noise-free
liquidity demand and a quadratic cost function. In Vives’s model existence of such BNE fails if the private asset

value model becomes a common value model.



price functions relates to the question which theoretical models may support Fama’s (1979) Ef-
ficient Market Hypothesis. In competitive REE models the informed traders condition their
demand decisions on interim information revealed through the REE price function. Radner
(1979)—for the case of a finite state space—and Allen (1981)—for the case of a general probabil-
ity space—show that the information revealed by the REE market price function is for noise-free
liquidity demand generically one-to-one to the full communication information, i.e., to the in-
formation that would obtain if all traders truthfully shared their private information. Early
examples of “fulfilled expectations” (=rational expectations) equilibria appear in Green (1975),
Grossman (1976, 1977, 1978), and Kreps (1977). Although noisy REE models with normally
distributed liquidity demand keep the REE market price function from fully revealing, the mar-
ket price function of noisy REE converges to fully revealing prices if the variance of the noisy
liquidity demand goes towards zero (cf. Hellwig 1980; Grossman and Stiglitz 1980).

The BNE price function in Kyle’s (1989) common value model remains bounded away from
being fully revealing if the variance of the noisy liquidity demand converges to zero. In contrast,
the BNE price function is fully revealing for Vives’s (2011) noise-free, not common value model.
However, whether the BNE price function reveals any private information or not, is completely
irrelevant to the traders’ strategic choice in Kyle’s and Vives’s models as their respective BNE are
derived through the above “irrelevance of interim price information” argument. This raises the
following question: If the traders themselves do not care about the informativeness of the BNE
price function when choosing their best responses, why should we—as external observers—care
about the price informativeness of these BNE? Put differently, in the constant, symmetric BNE
of Kyle (1989) and Vives (2011) it does not matter to the actual market participants’ decisions
whether the markets are information-efficient in Fama’s sense or not.

Strategic market games with interim price information can generate different economic out-
comes than Bayesian market games (e.g., price-collusion) exactly because the observation of
interim price information may be relevant to the traders’ strategic choices. The relevant infor-
mation that is revealed by prices in a Nash equilibrium of a strategic market game with interim
price information does not necessarily concern the ‘true’ asset value—as in competitive REE
models—but rather the strategy choices of the other traders. For example, the price-collusion

Nash equilibrium that I derive for the procurement scenario does not reveal any trader’s private



information. Interim price information only assists the traders to coordinate towards price-
collusion against the liquidity trader because deviating behavior can be punished based on this
price information. A highly informative price function would thus be rather bad news for the
government in a procurement situation because it might support price-collusive behavior.

The remainder of this paper proceeds as follows. Section 2 sets up the probability space and
recalls relevant concepts from measure theory. Bayesian market games are constructed in Section
3. Section 4 presents a sufficiency condition for identifying BNE. Strategic market games with
interim price information are constructed in Section 5. In Section 6, I demonstrate the possibility
of price-collusion in a procurement situation. Section 7 concludes. All propositions are proved
in the Appendix. The Supplemental Appendix revisits—and slightly extends—Kyle’s (1989)
original analysis of constant, symmetric BNE for Bayesian market games within his CARA-

Gaussian framework.

2 Preliminaries

2.1 The probability space

Let V; C R denote the set of possible asset values from the perspective of (informed) trader
i € {1,...,N}. Denote by ©; C R the signal space of i € {1,..., N}. Denote by Z C R the set
of possible values for the inelastic demand of the liquidity trader. Define the probability space
(Q, B, ) such that the state space is given as

Q=Vix - XVyXx0O; x---x Oy xZCRNL

with w = (vq,...,vn,01,...,0Nn,2) €  as generic element; B denotes the Borel sigma algebra
generated by the Euclidean product topology on 2; the probability measure 7 stands for the
traders’ common prior.

For any X C RM T write B(X) for the Borel sigma algebra generated by the Euclidean
product topology on X. Recall that a function f : (Q2,B) — (X,B (X)), or simply written
f:Q — X, is B-measurable iff

A€ B(X) implies f!(A) € B

8



with the pre-image of A under f being defined as
A ={we] f(w)eA}.

If f is measurable with respect to any subalgebra G C B, it is also B-measurable. Random
variables are B-measurable functions from (2, B) into (R, B (R)).

I will use the following coordinate random variables

v (v1, .., on, 01, ..,0N,2) = v, i€{1,...,N},
0, (vl,...,vN,Gl,...,HN,z) = 92‘, 1€ {1, ...,N},

z(v1,...,0n,01,....,0N,2) = 2z,

which stand, respectively, for trader i’s private asset value, trader ¢’s private signal, and the
demand by the liquidity trader. I speak of a common value model iff there exists some random
variable v such that, for all 7, v; (w) = v (w) for m-almost all w. The demand of the liquidity
trader is noise-free iff

7 (z=z) =1 for some z € Z

and noisy else.

2.2 Conditional expectations

A random variable u : Q — R is (Lebesgue) integrable wrt 7 iff°

/u+d7r<ooand/u_d7r<oo
Q Q

with

®The definitions and notations follow closely Section 34 in Billingsley (1996).



Consider any sigma-algebra G C B. If a random variable u is integrable, then there exists, by

the Radon-Nikodym Theorem, a random variable
Eul|g):Q—R (4)
such that
1. E(u||G) is G-measurable and integrable;

2. E(u||G) satisfies for all G € G the functional equation

/GE(u 19) dW:/Gudw. (5)

Definition. Any version of E (u ||G) is called the conditional expected value of u wrt G.

Because 2 € G for any G C B, (5) yields for G = 2 the law of iterated expectations:

/QE(u IG)dr = /Qudw (6)

=

E(E(u]g) = E(u).

2.3 Sigma-algebras generated by random variables

Consider a collection of random variables y1, ..., y,,. I denote by G (y1,...,ym) C B the sigma-
algebra generated by yi,...,¥.,,, which is the smallest sigma-algebra for which every yi, k =

1,...,m, becomes measurable. Note that we have

/QE<u 1G (F1s s yom) i = / 0 (- | Y1, e Yon)

Q

with 7 (- | y1, ..., ¥m) denoting the corresponding conditional probability measure. For a single

random variable y we have the explicit expression
G(y)={y ' (B) forall B B(X)}.

Consider, for example, the familiar case such that the private signal random variable 0; has full

support on the finite set ©; = {61, ...,0,,}. Then G (0;) is generated by the partition
0.0,

10



such that

In that case we obtain as conditional expected value of u in any state w with 8; (w) = 0

Eu|G(0))) (w)= mxz udr = /Q udr (- | 0; = 0y)

with conditional probability measure

7 (BN (6; = 0))

T (B 0= 00 = 5

for all B € B.

Two collections of random variables yi, ..., y,, and yi, ..., y,, are informationally equivalent iff

g (Y17 ---7Ym) =G (yllv "'7y:1) .

Informational equivalence holds iff there is a one-to-one mapping f such that

(YL 7ym> = f (y,h 7Y;L> for all w.

3 Bayesian market games

In a Bayesian market game the informed traders simultaneously submit their linear demand-
schedules to the Walrasian auctioneer after they have observed their private signals but before

they receive any price information.

3.1 Strategies

The set of actions

ACRXR xRy

contains the admissible values of the three different functional parameters that enter into a linear

demand-schedule submitted to the Walrasian auctioneer.

Definitions. The set of strategies of trader i, denoted XP

2, consists of all G (0;)-measurable

functions o; : Q) — A such that



The set of strategy-profiles of T'B is given as 8 = x¥

AN

2B with generic element o : ) —

Given strategy o; and w € (2, the resulting action

induces the demand function

2 [0; (W)] (p) = 1 10; ()] + B[0; (w)] — v [0i (W)]p (7)

which is linear in p with slope —v[0; (w)] < 0 and intercept 1 [0; (w)] + 8 [0; (w)] € R. The
economic interpretation of action o; (w) is as follows. After trader i receives in state w his

private signal ; (w), he submits to the Walrasian auctioneer the demand-schedule

(2:[0: ()] (P) ;1) per

through which he commits himself to buy (resp. sell) amount (7) at price p if the auctioneer
announces p as market price. In what follows I also refer to 8; (w) as trader i’s agent in state w.

I call o; € ¥F a constant strategy iff for all w

oi (W) = (1, By, 7:) € A.

Note that a constant strategy does not mean that the trader submits the same demand-schedule
in every state of the world. A constant strategy o; would induce a constant demand-schedule if

it additionally satisfies 3, = 0 so that for all w

2 [0; (w)] (p) = p; — vip-

3.2 Market price function

A price p clears markets in state (-, 01, ...0n,2) € Q under strategy profile o € ¥5 iff

Zi\il ([0:]+ B 10:]0:) + :
Zi]\il v [0:]

By our assumptions v [-] > 0 and p € R, we have for every w € ) under every o € ¥ a unique

Zmi[ei](p)—i-z:O@p:

market price that will be announced by the Walrasian auctioneer.

12



Definition. Market price function for the Bayesian market game. The market price

function plo] : @ — R under strategy profile o € X8 is given as

S (116 ()] + 516: ()] 6: () + ()
T, 718 ()]

p[o] (w) = (8)
A word about measurability. Since all strategies o; € 2,7 € {1, ..., N}, are, by assumption,
G (0;)-measurable, all strategy profiles 0 € XF are B-measurable (cf. 4.49 Lemma in Aliprantis
and Border 2006). The market price function p [o] : @ — R under o is formally a composition
(po(o,z)) : @ — R of the functions p : (AY x R,B(AY xR)) — (R,B(R)) and (0,2) :
(2, B) — (AY x R, B (AN x R)). With p being continuous in (4, 3,7, z) € AV xR (and therefore
B (AN x R)-measurable) and (o,z) being B-measurable, the market price function (8) is, for

every o € X8, B-measurable (cf. 4.22 Lemma in Aliprantis and Border 2006).

3.3 Utility and Bayesian Nash equilibria

All traders are expected utility maximizers who have the same strictly increasing Bernoulli utility
function u : R — R defined over payoffs. I distinguish between two different plausible economic
scenarios, i.e., the market versus the procurement scenario. Loosely speaking, the market scenario
corresponds to a double-auction situation in which all traders (informed and liquidity) could act
as buyers and sellers. In contrast, the procurement scenario resembles a single-auction situation
as | will take away any incentives for an informed trader to compete as a potential buyer with

the liquidity trader who has always positive demand for the service/product, i.e., 7 (z > 0) = 1.

Market scenario. The trader i’s B-measurable payoff function g; [o] : 2 — R satisfies

gilo] = (vi —plo]) z: [0i] (p [0] (w)) +t (2 [6:] (p [0])) (9)
whereby
(vi = plo]) i (6] (p [o])
stands for gains-from-trade which hold for arbitrary (negative or positive) asset positions. The

function ¢ : R — R, giving rise to a B-measurable composition to (z; [0;] (+)) : @ — R, covers any

additional cost or technological benefits that exclusively depend on the traded amount. In Kyle’s

13



(1989) model we simply have ¢ (z) = 0, z € R; Vives (2011) considers ¢ (z) = —32?, = € R, with

parameter A > 0.

Procurement scenario. In the procurement scenario the liquidity trader (e.g., the govern-
ment) acts as a monopsonist who has the institutional power to avoid any positive demand
competition from informed traders. Formally, I define trader i’s B-measurable payoff function
g o] : 2 — R under o as (9) whenever z;[0;] (p[o]) < 0 but as g; [0] = 0 else. That is, any
trader who demands a non-negative amount at the market price will now be punished with a zero
payoff. To keep the model simple, I assume that the remaining traders will sell their aggregate

supply to the liquidity trader at the original market price p [o] (w).

Bernoulli utility. Write u; [o] for the composition u o g; [0] such that, for all w € Q,

(uogilo]) (w) = u(gilo] (w))

Since the Bernoulli utility function u (-) is—as an increasing function—B (R)-measurable and
g [0] is B-measurable for either economic scenario, the utility random variable u; [o] : 2 — R is

B-measurable. I further assume that u; [o] is integrable wrt 7 for every o € $8.

Definition. The utility of trader i from strategy-profile o € X8 is given as his expected utility
UP (o) = E (w [o]) = / w; [o] dr.
Q

Collecting the above components yields the Bayesian market game

B B 7B
' = <<Qa B; 7T) ) Zz ) Uz >i€{1,...,N} . (10)

Definition. Bayesian Nash equilibria (=BNE). The strategy profile
(O'Tv s U?\/) = ((UT [‘91])91661 AR (U*N [QNDHNGG)N) S EB (11)

6Technically speaking, I only allow for Bernoulli utility functions which imply u; [0] € Ly () for all 0 € 8
(cf. Chapter 13 on Ly-spaces in Aliprantis and Border 2006). Although this depends, in general, on the measure
7, one could simply ensure integrability of u; [¢] for all ¢ € & wrt any probability measure 7 by restricting
attention to u (-) which are bounded from above and below implying, for all o € £2, u; [0] € Ly, (7) C Ly () for

all 7.

14



is a BNE of T'P iff
UP (0F,0%;) > UP (0;,0%;) forall o; € »B

for every i € {1,..., N}.

4 A sufficiency condition for identifying Bayesian Nash
equilibria

This section develops in detail the “irrelevance of interim price information” argument that has
been originally employed by Kyle (1989) and Vives (2011) for the derivation of their constant,
symmetric BNE. Importantly, any BNE which can be established through this “irrelevance of
interim price information” argument will carry over to ‘become’ Nash equilibria for strategic

market games with interim price information.

4.1 The (unobserved) residual demand function

The market price function (8) can be equivalently characterized in terms of the residual demand

function of any trader ¢ through the equation
plo]=D;lo-i]+ oo (n]0;] + B[6:]0; —v[0:]p[o])

such that the intercept and the slope of i’s linear residual demand function are, respectively,

given as the random variable p; [0_;] :  — R with

Zj;éi (1(0;] +316;]0;) + z
Zj#fy [Gj]

and as the random variable av; [0_;] : @ — R with

P [U 71'] =

Observe that for all o € X8

G(0;,plo]) CG(0;,D;[0-],a;[0-i]),

15



because of
Piloi] +ailoi] (n[6:] +51[60:]6;)
1+ a;o_;]v][0;] ’

plo] =
We have informational equivalence
G(0:,p[0]) = G(0i,Di[0]) = G (0, Pi [0 ], i [0-]) (12)
for any o € X such that for all j # i
v10; (w)] = ~; for all w

as a; [0_;] becomes then a constant.

4.2 The “irrelevance of interim price information” argument

Although trader 7 does not observe in a Bayesian market game any interim price information
before he submits his demand-schedule to the Walrasian auctioneer, let us entertain the thought
experiment that he could condition his demand-schedule not only on his private signal 8; but

also on the values of p; [0_;] and a; [0_;].

Proposition 1.

o Suppose that o* € ¥B satisfies the following “irrelevance of interim price information”

condition: for m-almost all w € §2
> K (uz’ [O-ho-ii] Hg (eiaf)i [O-ii} y O [Jii})) (W)
for all o; € X8 for every i € {1,...,N}.
o Then o* € ¥ is a BNE of the Bayesian market game I'B.
The identification of constant, symmetric BNE in Kyle (1989) and Vives (2011) can be best

thought of as a special case of Proposition 1. Focus on a market scenario in which 7’s opponents

choose a constant, symmetric strategy profile o*; such that for all j # i

*

o} (w) = (u, B,7) for all w.

16



In that case the parameters of i’s residual demand function become

N=Dpu+B>.,0;+z
B (N-1)y

and
1

N

implying the informational equivalence (12). Suppose that there exists some optimal demand of

(87} [O’il} = [Uil

i against o*; as a function in (8;, p) given as the maximizer

z; (0, p) (14)
€ argmax F (u ((vZ — P [J*_J — o [U*_J %) ;i + t(l‘z)) |G (91‘7151‘ [0*_1 ) O [‘7*—1‘}))

z; ER

such that

A~

P=D; [U*—J T [U:’} z; (04,p) -
If one can establish that there exist parameter values
(3,77 € A
such that
one has shown that
ol (w) = (p*, 5%,7") for all w

is a best response of trader i against ¢*,. Such a constant best response strategy satisfies the
“irrelevance of interim price information” condition (13) for i because the same induced demand-
schedule (15) is, by construction, utility maximizing against o*; for all 8; (w) , P; [0%;] (w), a; [07;] (w),
w € ). By Proposition 1, the strategy profile ¢* is thus a constant, symmetric BNE.

The existence of a maximizer (14) for any given (6;, p) is not a problematic issue under stan-

dard regularity conditions. The challenge is to identify conditions for which the linear structure

(15) holds. Let me elaborate.

17



Example 1. Suppose that the traders are risk-neutral, i.e., u (z) = z, and that

t (z) = 0. The conditional expected utility of i wrt G (Oi7 pi [0*_

J) as a function in

demand z; is then given as
(B (vill G0, Bi[o-i) = Bi [07,] — i [o7] i) .

The utility maximizing demand is pinned down by the FOC as

_EWillG (08 [0%]) —bi[o%i]
20 [O'i-}

2

Substituting
pi 0% =p+afo7,] 2]
and rearranging yields the maximizer (14) as a function in (6;, p):

E(vi|[G(6:p) —p
30@ [Uiz]

(2

The challenge for establishing a BNE in constant, symmetric strategies would be to

identify
ol (w) = (%, 5%,7") € A for all w and i
such that
: E(vi || G(8;p[07]) —plo’]
w+ 570, —y'plot] = - (16)
B((N=1)v)"
holds.[J

Vives (2011) analyzes a risk-neutral Gaussian framework with noise-free liquidity demand.
He shows that—under suitable parameter conditions—there exist a constant, symmetric BNE if
one (i) deviates from the common value assumption (i) and ¢ (z) = —32? (cf. Proposition 1 in
Vives (2011). For the reader’s benefit I review and slightly extend in the Supplemental Appendix
Kyle’s (1989) original derivation of constant, symmetric BNE for a CARA-Gaussian, common
value framework with noisy liquidity demand (Proposition 4). I also show why such derivation

fails if the liquidity demand is noise-free (Proposition 5).
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5 Strategic market games with interim price information

In a strategic market game with interim price information, denoted I'C, the informed traders
simultaneously submit their linear demand-schedules to the Walrasian auctioneer after they have

observed their private signals and their interim price information.

5.1 Strategies

For the Bayesian market game I'" strategies were defined as G (6;)-measurable functions resulting
in B-measurable strategy-profiles. It turns out that the “chicken-egg” problem arising from
the rational expectations concept of interim price information makes such a direct approach
impossible for T'".

5.1.1 Set-up

In contrast to a Bayesian market game, the agents of trader ¢ are now not only characterized by
their private signals 6; € ©; but additionally by their interim price information (p;, ;) € R x R-g
such that p; denotes the intercept and «; the slope of i’s residual demand function (cf. Section
4.1). A strategy of trader i assigns to every agent [0;, p;, ;] € ©; X R x R.o some action in the
set

ACRXR xRy

with generic element (u [0;, pi, ol , B [0s, Pis il , v [0i, Diy vi))-
Definitions.
(i) The set of strategies of trader i, denoted $3¥, consists of all functions o; : ©; xR x Rog — A.
(ii) The set of strategy-profiles of T is given as ©F = xN¥ %P with generic element o.
The interpretation of the action

0; [eiaﬁiaai] = (M [91'7]5@',0%] 3 [eiapi:ai] y Y [eiaﬁiaai]) €A (17)
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chosen by agent [0;, p;, ;] is as follows. Suppose that trader i receives his private signal 0.
When he additionally observes the interim price information (p;, v);, he submits to the Walrasian

auctioneer the demand-schedule

(wi [9i7ﬁi7 ai] (p) >p)pe]R . (18)

Through this demand-schedule trader ¢ commits himself to buy/sell the amount
i [0i, piy il (p) = p10i, Di, il + B 10, Di i) i — v [0, piy il p (19)

at price p whenever the auctioneer announces p as market price.

5.1.2 The “chicken-egg” problem

The conceptual challenge is to determine which demand-schedules are submitted by which agents
in any given state of the world w under strategy profile ¢ € 7. This was trivial for the Bayesian
market game I'? because in state w the agents 0; (w) = 6;, i € {1,..., N}, submitted demand-

schedules induced by the action-profile

(1 16:], 810, [ei])ie{l,...,N} e A.

As a consequence, I could define a strategy of trader i as a G (6;)-measurable function into the
action space A. The situation is significantly more complex for a strategic market game with
interim price information I''’ because each agent i’s interim price information (p;, c;) has to be
consistent with his opponents’ interim price information (p;,;), j # 4, which in turn might
depend on all agents’ actions.

To illustrate this challenge, recall that the market price in a Bayesian market game was

unambiguously pinned down under o € £7 in every state w as

plo] (w) = Pi [o—i] (@) + ey [oi] () z; [6; ()] o0)
such that
Pilo](w) = > i [0 (W) + B0 (w)] 6 (w) +z (w),
227105 (W)]
;o) (w) = !

Zj;&i 7(6; (w)]
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whereby ¢ was arbitrary. Let us try and pin down the market price for a strategic market game
with interim price information under o € X¥ in state w analogously by simply substituting for

the agents 0y (w), k € {1,..., N}, the new “agents”

[Ok (w) ,f)k [O',k] (w) , Ol [U,k] ((JJ)] , ke {1, e N} .

In that case, (20) becomes

such that

I > i k[0, D5 lo—i], ajlojl] +B10;,Pj o], a;[0-]]0; + z
pilo-d = 3 0,5, 17 0 o) B

1
o) = > 27105, D5[04], 5[0 5] “

The crucial difference to the Bayesian market game is that o; now also appears through o_;
in the the RHS of the equations (22) and (21). In other words, i’s residual demand function—
and thereby his interim price information—is no longer exclusively pinned down by the strategy
choice o_; of his opponents as in the Bayesian market game but it might now also depend on his
own strategy choice o;.

This, in a nutshell, is the “chicken-egg” problem of the rational expectations concept: What
comes first, ¢’s interim price information—which may depend on the choice of his strategy o;,—or

his strategy choice o;—which may condition on his interim price information?

5.1.3 The action-profile correspondence

I address the “chicken-egg” problem through a consistency condition which takes on the form

of a system of equations. For a fixed ¢ € ¥ and state w consider the following system of 2N
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equations in the 2N unknown values (p;, «;), i = 1,.., N:

o i k[0 (W), P il + B0 (W), Pi, ] 6 (w) + 2 (w)
n S [0: () o] (2)
L S l0:) h o + 518 () i ] 0 () + 7 ()
- > on 7 [6: (@) . iy ]
1
T S0 @) ]
A 1
N Z#NW[Oi(W)?ﬁuOéi].

By construction, any solution (p;,c;);_; y to (23) identifies for every trader i some interim
price information (p;, ;) that is consistent with all the other traders’ interim price information
(pj, @j), j # 1, in state w under strategy-profile o.

Collect all solutions (p;, ;);; y to (23) in the following, possibly empty, set

QY [0] (w) € (R x Rs)™.

Next I define a correspondence which identifies for every state w the candidate action-profiles

that might be chosen by the traders’ candidate agents

([0i (W), Pi, uil) iy,

Ly

subject to the constraint that the interim price information of all agents (p;, «;) ... s asolution

to (23). -

Definition. Action-profile correspondence. For a fized o € ¥ define the correspondence

olo]: Q= AN such that

plo](w) = {(M [0; (w) . Di, u] . B[0: (W), Pis il 1y [0 (w) , Dy ai])i:l,..,N e AY
[ (i), € QY [0] (@) } (24)
Observe that there are three possibilities regarding the values of the action-profile correspon-

dence:
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1. If ¢ [o] (w) is single-valued, the action-profile that will be chosen in state w under strategy-

profile ¢ is unambiguously pinned down.

2. If p[o] (w) is multi-valued, there are multiple candidates for the action-profile that might

be chosen in state w under o.

3. If plo] (w) is empty, there do not exist any candidates for the action-profile which might

be chosen in state w under o.

In what follows I provide examples for all three possibilities.

Single-valued action-profile correspondence. Note that ¢ [o] (w) is single-valued iff the

system (23) has a unique solution, i.e., iff

Q" (o] (w) = { (i, )i | -

I call o; € F a (p;, o;)-constant strategy iff

0 [0i, iy cu] = (]0:], B10:] v [0:])
for all [Hi,ﬁi,ozi] € @z x R x R>0.

Lemma 1. Suppose that all j # i choose (p;, a;)-constant strategies o; € Ef. Irrespective of i’s
strategy choice o; € X, the action-profile correspondence ¢ [o] : Q = AN is single-valued
in every state w because (23) has a unique solution given as:

o o0 ) 4510, ()6 +7(2)

' Zj;éi 7[6; (w)] ’
1

Zj;éi v [0k (w)]

; =

and, for all j # 1,
b = ([0 (W), pi, ou] + B[0; (W), Pi, 23] 05 (w)
! 7[0; (w), pZaa1]+Zk7&zg 6, (w)]
Zk#](ﬂ[ (W)] + B0k (w)] Ok (w)) + 2 (w)
Y10i (W), Bis ] + 34y v [0k W)
1
’ V(0 (W), piy ] + Zk;ﬁi,j v [0k (w)]
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Multi— or empty valued action-profile correspondence. In general, there may exist o €
P for which ¢ [0] (w) might be multi-valued or empty because the system (23) may have multiple
or no solutions. By Lemma 1, this is only possible for ¢ € ¥ such that there are at least two

traders who do not choose (p;, a;)-constant strategies.

Example 2. Let 7 (z =0) = 1 and N = 2. Consider any o = (01, 02) such that,
for all ¢ and all [6;, p;, ;] € ©; X R X Ry,

6[0i7ﬁi7ai] = 07
V[Qi,ﬁi,az‘] = L

Observe that these parameter specifications imply that both traders’ interim price
information only depends on the specification of their p [-]-parameters because we

have for every state w

- (u[02(w) P2, 0] + B[Oz (W), P2, 0] 02 (w)) W) B

P = 7[02 (w),ﬁ2,ag] —M[92( ),P2, 2]7
1

“o= Y [92 (UJ) , D2, 042] =1

as well as

~ o (:U’ [01 (w)aplaal]_’_ﬁ[el (W),ﬁl,al] 01 (W)) . w 5 . o

P2 = 7[01 (W),ﬁl,Oél] —M[91( )71717 1],
1

Qg = =1.

761 (W), P1, i
Any solution to the system of equations (23) is thus characterized by p; and po
satisfying

p1 = [0z (w),pe, 1] (25)

In what follows I make both traders’ i [-]-parameters dependent on their interim price

information to the effect that both strategies are no longer (p;, a;)-constant.
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Case (i): Multiple solutions. Further specify o such that for all [6;, p;, ;] €
®i x R x R>0,

. 1 ifp; =0
1% [917191, 051] =
0 else;
. 2 ifpy=0
1% [927192, 042] =
0 else.

Then there exist exactly two solutions to (25) for every w € §2:

and

Consequently, for all w € €2, ¢ [0] (w) contains the action-profile

(1[0 (W), Pis il , B0 (W), Diy ] 17 [0i (W), iy i)y o
= ((0,0,1),(2,0,1)),

resulting in market price p [0] (w) = 1, as well as the action-profile

(110; (W), pis il , B1O: (W), Pi, ] 1y [0 (W), P, Oéz‘])i:m
= ((1,0,1),(0,0,1)),

resulting in market price p [0] (w) = 3. That is, the model does not unambiguously
pin down which of these alternative demand-schedules—with different resulting mar-

ket prices—will be submitted in any given state w.
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Case (ii): No solution. Alternatively, specify o now such that for all [0;, p;, ;] €

®i X R % R>0,
R 1 ifp; =0
1% [917191, 051] =
0 else;
R 0 ifpy,=0
1% [927192, 042] =
1 else.

Then there does not exist any solution to (25). To see this, suppose that

P2 = p[01 (W), p1, 4] = 0.

But then
[0z (w),pa, a0l =0=p1 =0= p[0; (W), p1, 1] =1,

a contradiction. Now suppose that
pa = 1 [01 (W), pr, cu] # 0,

implying
p(02 (w),p2,a0) =1=pr =1= p[0 (w),p1,01] =0,

also a contradiction. Consequently, we have ¢ [0] (w) = 0 for all w.OJ

5.1.4 Well-behaved strategy-profiles

In contrast to a Bayesian game I'®—for which every strategy profile o € ¥ was a B-measurable
function by construction,—we have for I''’ that every o € X¥ induces an action-profile corre-
spondence ¢ [o] : © = AV, To obtain a well-defined expected utility integral for strategy profile
o, we need to select from this correspondence a B-measurable function f [o] : Q — AN satisfying
flo] (w) € plo] (w) for all w.

If ¢ [o] is single-valued for all w € €, there trivially exists a B-measurable selector iff the
unique selector f [o] (w) € ¢ [o] (w) is B-measurable. If ¢ [o] is empty-valued for some w € €,

there cannot exist any B-measurable selector. In case ¢ [o] is multi-valued for some w € Q,
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formal conditions for the existence of a B-measurable selector are not obvious. The Kuratowski—
Ryll-Nardzewski Selection Theorem stated in Aliprantis and Border (2006, p.600) provides such

sufficiency conditions for our framework. Recall that the lower inverse of ¢ [o] is defined as
o [0](C) ={w e Q| plo] (w)NC # B} for any C C AV,

Existence of a B-measurable selector (cf. 18.13 Kuratowski—Ryll-Nardzewski Se-

lection Theorem in Aliprantis and Border (2006)).

o Suppose that the correspondence o [o] : Q = A" is weakly B-measurable in the sense

that ol [0] (V) € B for all open sets V in the Euclidean product topology on A™N.

e Then a B-measurable selector fo]: Q — AN from ¢lo] : Q = AN exists whenever

¢ [o] (w) is non-empty and closed for all w € S).

Example 2 continued. For Case (ii) the action-profile correspondence ¢ [0] (w) =
() for all w is trivially weakly B-measurable and closed-valued but empty for all w € Q.

For the multi-valued correspondence of Case (i)

¢ [o] (w) = {((0,0,1),(2,0,1)),((1,0,1),(0,0,1))},
we have o [o] (V) = Q for every open V such that
((0,0,1),(2,0,1)) e Vor ((1,0,1),(0,0,1)) € V;

and ¢* [o] (V) = 0 else. Because of 0, Q € B, the finite-valued ¢ [o] is trivially weakly
B-measurable, so that there must exist some B-measurable selector. To be precise,

the set of all B-measurable selectors for ¢ [0] is given as the following family
felo]:Q— AN BeB

such that
((0,0,1),(2,0,1)) ifwe B,

fololl) = ((1,0,1),(0,0,1)) if we O\B.

~—  —
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Unique Selector Assumption. If there exist multiple B-measurable selectors, the modeler is
free to pick a unique B-measurable selector f*[o] : Q@ — AN with the interpretation that

the value

ol (w) = (1 [0: (W), pi, cu], B0: (W), Pi, i) v [0 (w) , D Oéi])i:L,,,N
is the action-profile actually chosen by the traders in state w € Q under o € XF.

The interim price information of any trader i corresponding to this unique selector f*[o] is

then given in state w as

5ol — sl [0 ) B+ 816 ) 50,16, (@) +2 ()
Z 37110 () f ] ’
1

> 27105 (W) by o]

For model-interpretational reasons we are interested in strategy-profiles for which the demand-

schedule of any trader 7 in state w is constant across all w’ € €2 such that
W' € [0; (), Pi[0] (W) , e; o] ()]
Definitions. Well-behaved strategy profiles.
(i) I call a strategy profile o € BF well-behaved iff there exists a B-measurable selector
frlol = (fi 1ol i o))
such that ff[o]: Q — A is G(0;,Di o], e [0])-measurable for all i.
(ii) I collect all well-behaved strategy profiles of T'T in the set X* C BT

The upshot of this definition is that we have now pinned down for any well-behaved o € 2F*

through the selector f*[o] the agents

([0 (@), Bi o] (W), i o] (W)])imy, v

that are submitting their demand-schedules in state w € €2 to the Walrasian auctioneer.
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5.2 Utility and Nash equilibria

Since f* [o] : © — AN is B-measurable for every o € ¥*, we have for every well-behaved o € X~

a B-measurable market price function
p o] = Pi[0] + a;[o] 2: (6, Di [0] , i [o]]
where i is arbitrary. The payoff-function (9) of the market scenario becomes now for o € *
gilo] = (vi—plol)2:[0;,b; [0], ai [o]] (p [0]) + 1 (2:[0:, Bi [0] , i [o]] (p [0]))
whereby I set for the procurement scenario g; [c] = 0 whenever
;16,Di [0], e [o]] (p [0]) > 0.

All traders share the same strictly increasing Bernoulli utility function such that for every well-

behaved o € X7* the utility random variable u; [0] : Q — R with

u; [o] (W) = (uogilo]) (w) = u(gilo] (w))

is B-measurable. I assume that u; [0] is integrable wrt 7 for every o € X7*.
Strategy-profiles that are not well-behaved are not evaluated through some expected utility
integral. Instead of providing a specific utility number for such o ¢ X, 1 only assume that

there exists some common upper bound for their utility.”

Definition. Utility.

(i) For any well-behaved o € ¥F* the utility of trader i is given as his expected utility
UF (o) = B (w o) = [ u(gilol)dr.
Q

(ii) For all o ¢ S there exists an upper bound 4 € RU {—oo} such that UF (o) € RU {—cc}
satisfies

Ul (o) < a.

TIf one specifies this upper bound as & = —oo, the traders would never have a strict incentive to choose some

o; as a best response against o_; that results in o ¢ L7~
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Collecting the above ingredients yields the strategic market game with interim price informa-

tion
P P P
F = <(Q, B, 7T) 9 EZ 7U’L >’i6{1,...7N} . (26)
Definition. Nash equilibria. The strategy profile
* * A * ~ P
g = <(al [917})17 al])[ol,ﬁ17a1]€®1XRXR>0 )ty (UN [9N7pN7 OéN])[aN,ﬁN,aN}E(‘)NXRXR>O> S E

is a Nash equilibrium of T'F iff
Ul (o7,0%;) > U} (04,0%;) forall o; € &7

for every i € {1,...N}.

Nash equilibria of I'” are not Bayesian Nash equilibria because I'"’ is not a Bayesian game.

That said, a relevant class of BNE of I'® carries over to ‘become’ Nash equilibria of I'F.
Proposition 2.

o Suppose that there exists a BNE o* € ©8 of T'B with

for all © such that o* satisfies the “irrelevance of interim price information” condition

(18) from Proposition 1.
o Then any o* € X consisting of (p;, cvi)-constant strategies such that
0% [0 ca] = (1" 6], 5" [6:],7" [8:]) for all (5, ) € R x Reyg
is a Nash equilibrium of T'F.
The intuition behind the formal proof of Proposition 2, based on Lemma 1, is straightforward:
if all opponents j # i chose (p;, «;)-constant strategies, ¢ cannot influence his own interim
price information through his strategy choice. If the “irrelevance of interim price information”

condition from Proposition 1 holds, he would thus pick in every state of the world the same best

response as in the Bayesian market game because only his private signal 8; matters.
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6 Price-collusion in a procurement situation

Vives (2011, 2017) lists several economic situations—such as, e.g., “bidding for government
procurement contracts, management consulting, or airline pricing reservations” (Vives 2011,
p-1919)—in which traders compete via demand-schedules. Let me briefly illustrate why compe-

tition via linear-demand-schedules with parameters

(1 11 B: 1,7 [[]) € ACR X R xRy
is particularly relevant for procurement situations.

Example 3. Procurement situation. Suppose that the government has some
noisy or noise-free liquidity demand for national electricity supply from different com-
panies i = 1,..., N corresponding to different technologies (e.g., coal, solar, nuclear,
etc.). These companies stand for the informed traders who have private signals 6;
about their respective cost functions and who observe their residual demand function
with parameters p;, ;. Further suppose that the government asks the competing
companies to submit bids for procurement contracts that must separately list (i) the
price for the cost of building a new power plant and (ii) the subsequent per-unit price
for electricity production in these new plants. If these per-unit prices are constant
over the relevant production range, a bid is equivalent to the submission of a linear
demand-schedule that corresponds to the linear total price function in the supplied
amount x;

pla) =" U+ 5016 1 ;.
i [ i [
[1+8;[10i

Here, “T corresponds to the fixed price for building the new power plant and

%H corresponds to the per-unit price for the subsequent production of —x; units of

electricity. Suppose that the companies chose some Nash equilibrium strategies which

give rise to linear demand-schedules
i (p) = pi []+ B []0: — i [-]p for all p.

When the government learns its inelastic demand z = z > 0, the Walrasian auctioneer

determines the market clearing price p* at which the government’s demand equals
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the aggregate supply:

N N
.. SN 4B 642
2 rz=0ep Sl

The government pays then effectively to each company i with equilibrium supply

*

x; (p*) < 0 the amount

7

pr [+ 6000 1,

pr=p (i (p7)) = ; — = ().
i ] i [
Importantly, this total amount can now be split up into two installments: the gov-
ernment may initially pay the fixed amount W for the construction of the new

power plant and subsequently the per-unit price ﬁ] for each of the z} (p*) < 0 units

of electricity produced by the new power plant of ¢.[]

The following assumptions will be sufficient for establishing price-collusion between the in-

formed traders against the liquidity trader in a procurement situation.

Assumptions. Procurement scenario.
(A1) Possible asset values: V; C R, i € {1,..., N}, is non-empty and compact.

(A2) Possible values for the liquidity trader’s demand: Z C R., is non-empty and

compact.
(A3) There exists some z* € Z such that ©(z = z*) > 0.

(A4) The payoff-function for the procurement scenario is given as

(vi—plo])zi [](plo] (W) + 1 (z:[](plo])) ifwi[](plo]) <O

0 else

gilo] =

such that t : R — R is non-decreasing on (—o0,0].

8This specification of ¢ (-) covers any cost function that increases in the supplied amount |z;| for z; < 0 such

as, e.g., Vives’s (2011) quadratic cost function ¢ (z) = — 522,
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Denote by p, some ‘punishment’ price satisfying

P gpin min @

which exists by compactness of the V;.

Proposition 3. Suppose that the Assumptions (A1)-(A4) hold. Further suppose that either one

of the following two conditions holds:
C1. The Bernoulli utility function u (-) is not bounded from above.
C2. The Bernoulli utility function u (-) is bounded from above and 7 (z = z*) = 1.

i) Then there exists a sufficiently large price p* € R such that the strateqy-profile o* € ¥ with
(1) y large price p Gy-p

L -5 if (pi, i) = <p* + W*—l)’ ﬁ)
1% [Qi,pu@z‘] = N 1 )
—Lgp, (E + 1> else
5* [Qiaﬁi;ai] = 0,
Y 0i, i 0] = 1

for all [0;,p;, ;] € RX R X Ryg, i € {1,..., N}, is a Nash equilibrium of T'T.

(ii) The corresponding equilibrium price and demand for all i € {1,...., N} in state w € Q are

given as

p* ifz(w)=2*

Pl = D else
5110, (). B[] @) . '] @] (P[] @) = ~ 2

Although the formal details of the proof are complex, the basic idea is easily explained for the
special case 7 (z = z*) = 1. In this case, the Nash equilibrium price will be p* in every state of the
world. If some trader ¢ deviates from his equilibrium strategy o} to some o; resulting in a different
market price than p*, each opponent j # i would learn through his interim price information that

some deviation has happened. By construction, the opponents’ Nash equilibrium strategy-profile
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o*, results then, for any deviating o;, in the ‘punishing’ market price p,. For sufficiently large

prices p* every trader would always rather collude than being punished.’

7 Concluding remarks

Strategic market games with interim price information combine (i) the rational expectations
concept of interim price information with (ii) Bayesian market games in which traders receive
private signals and compete via linear demand-schedules. As the main technical challenge 1
had to address consistency and measurability issues that arise from the “chicken-egg” problem
of rational expectations. Whenever interim price information becomes relevant to the strategic
choices of the traders, Nash equilibria of strategic market games with interim price information
go beyond BNE for Bayesian market games. As an economically relevant application, I show
that interim price information may support price-collusion between all informed traders against

a liquidity trader.

90bviously, such punishment of i by all j # i would also punish i’s opponents themselves, which might raise
questions in analogy to perfectness criteria for Nash equilibria in sequential games. Here, I simply assume that

the traders have the power to commit their agents to their chosen strategies.
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Appendix: Proofs

Proof of Proposition 1. By a basic dominance property of the integral, (13) implies

/Q E (u; [07,0%,]1IG (6:,5: [0,] v [07,])) dr
> [ B0t ]19 00pi o] o o)

This is, by the law of iterated expectations (6), equivalent to

B riot]) > B(w o))

> i
=
UB (0* o ) >

A PRI

UB (Ui,(T* ) .

7 —1

[

Proof of Proposition 2. Fix ¢*, and let us check that ¢ has no strict incentive to deviate
from strategy of. If all agents j # 7 have chosen (pj, o;)-constant strategies o7, any (ai, a*,i) €
¥F is, by Lemma 1, well-behaved with a unique B-measurable selector f*[o] : @ — AN such
that for all w € €,

A . o i 1[0 (W)] + 516 (w)] 0; (w) + 2 (w)
i [oi, 0] (w) = Bifol] (w) = S 10, @) :
1
Z#ﬂ [0 (W)]

The “irrelevance of interim price information” condition from Proposition 1: for m-almost all

(8 % |:O'Z',U* } ((JJ) = oy [J* } (Cd) =

—1

w e

E (w |o7,0%,] |G (6:,Di [07,] s i [0%,])) (w)
> E(w;[0i,0%] |G (0:,: [07] i [0%,])) (W),

35



implies then: for m-almost all w € )
E (u’i [U:a O-*—J ||g (0“ pz [0-:7 O-iz} y O [0-;(7 O-iz])) (w)
2 E (ul [Giv O-iz] Hg (017 f)l [Uiv O-iz] , & [O-iu O-iz:|)) (W) .

This yields, by a dominance property of the integral and the law of iterated expectations (6),

the desired result

UiP (0-:7 O-iz) > UZP (Uia O-iz) :
o
Proof of Proposition 3. Part 1: I determine i’s expected utility from o* € XF.

Step 1. Because of 5" [0;,¢;] = 0 and ~* [0;, ¢;] = 1, the system of equations (23) reduces for
strategy-profile o* to

L Zi;él w0; (W), pis ai] + 2 (W) 98
po= N1 (28)
N Zi;ﬁN 1 [0; (W), pis ai] + 2z (W)
pn-= N-1 !

B B 1
ap = - =0N = m

Consider, at first, any state w such that z (w) = z*. Then

Z*

. . 1 .
(pi, ;) = (p +N(N—1)’N—1) for all ¢

is a solution to this system of equations since

. . z* 1 . 2 .
7 {Bi(w)m +N(N_1>,N_1] =p" — 4 foralld
yields
o k0 W) pp ] H2 (N (p - F) 2
pi N -1 N -1
_ *+ —Z*
- PTNWN o

36



for all 7. Now consider any state w such that z (w) # z*. Then

R z (w) 1 ,
(Dir o) = (p*—i- NN 1)’ (N—l)) for all 7

is a solution to this system of equations. To see this, suppose that

*

z
D; < Px + ——. 29
PPt NN oD (29)
Then
J 1 . .
mwmwmmm=—£+m(—+0=>4N—wm+Nmmmnz
implies
N aW) : 2 ()
i = =—(N—-1)pi+ Np« + ——
=
)
hio= Pty
Finally, observe that we can always find some sufficiently large p* such that
N z (w) <o+ max Z i z*
=Ty =T NN o) S TNy

which confirms (29).
Step 2. Pick the selector f*[0*] : Q — AY, described as the solution to (28) under Step 1,

which pins down the agents

([0 (W), Bi [07] (), @i [0"] (W)])icy . v

*

such that for every w €  with z (w) = z

b))~ P T (30)
o) =

whereas for every w € Q with z (w) # 2,
L ] (31)
o (@) =



Since f[0*] is G (0;,D; [07], a; [0*])-measurable, o* is a well-behaved strategy profile. For any

w € Q with z (w) = 2* we obtain, by (30), as corresponding action

p 10 (@) Bilo) (@) e o' (@)] = b=
B [6: (@) Bi[0"] () o] (@)] = 0,
710, (), Bil0] (@) e o] ()] = L,

plo’](w) = Bilo"](w)+aifo"] (w) (1" [0i (W), Pi[0"] (W), i [07] (w)] = p[07] (w))

|
e (- B Al ®)
1
]

as well as

=
K
&
ol
q°
&
R
q°
S
I
|
o
Q'
x|
£
+
e
VR
8
q°
&
+
—
N———

as well as

This yields the market price

plrl) = il )+ aulor] () (~2AZH L (HTHD L) )

a; o*] (w)
1 1

N_1T N1

as well as the equilibrium demand

— p+ plo") (@) = plo*] @) = p.

0. (L) B 1ot () [0 ()] (010 (w)) = Pl 1) 1 B
51610 B0l @) e T @I I @) = -2 (1)
2l
N




because of

_Pilo"] (W)
a; [0*] (w)

=

Step 3. Recall that, by assumption, 7 (z = z*) > 0. Trader i’s expected utility from o* is

then given as

E(ulo]) = /<z_z*)u" (0] dr + /(#Z*)ui (0] dn

= 7 (z

S RI CEGIE R Ca EIAERES

+(1—7T(z:z*))/

u(vimp) () z+t(—5) ) dr (| (2 #2).

(2#2")

Because the V; and Z are compact and non-empty, there exists, by the Weierstrass theorem, the

following minimum

which implies

C =

min

(vi,2)€VixZ

=m0,

N

¢ < (vi(w) —ps) (—) % +t <_z(w)) for all w € (z # 2¥)

as t (+) is non-decreasing on (—o0, 0]. Because of v; (w) < max V;, we obtain

E(u;[0"])

>

™

(=) u ((p* ~ max V) ZN Lt (-%))

+(1—=—7m(z=2"))u(c).

Part 2: Let us check how ¢’s utility is affected if he deviates from o* = (Jf , 0*_1») e B to

some (0;,0%;) € ¥,

Case (i). Suppose that (o, 0%,

1’s utility

*

) is not well-behaved, i.e., (ai, a’ji) ¢ BF*. Then we have for

UZ»P (ai,a*_z») <a
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for some upper bound u. If u (+) is not bounded from above, there exists for any strictly positive

probability 7 (z = 2*) > 0 some large enough p* such that, for all (O'i, a*_z-) ¢ nb*

w(z:z*)u<<p*—maxw)z—];+t<—z—];>) t(1l-n(z=Nule) > a

=

E(w[of,0%]) > U (0:,0%,).

If u (+) is bounded from above, we can always find for 7 (z = 2*) = 1 some large enough p* such

that, for all (O’i, a*_i) ¢ L

*
—1

Case (ii). Step 1. Suppose now that (ai, o ) is well-behaved but does not pin down the

same agents as o* in some state w. That is, we consider now the case that (0;,0%;) € £* but'’

z 1
(85 o0 @) [0 ] @) # (0 + =17 7= ) 52)
so that all j # ¢ choose
« _ D, [UDU*—J (w) 1
S _aJ [Uz‘va*ﬂ] (w) o (aj [a-iao-*—i} (w) " 1) 7
6* = O?
o= 1

whereby I use the abbreviations

poo= pt [0 (w), By o 0t] (W), ey [on 0] (W]
B = B0 (w), By loi, 07 (W), e fos, 0% ] ()],
]
)

*

o= [93' (w), Dy [Uiaa*—i (), o [Uiaa*—i] (W)] .
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In what follows I will also simply write

Ky = [91‘ (w), Pi [Uz',U*_J (W), o [Uz‘,U*_J (Wﬂ )
B, = B0;(w).pioio"] (W), a;lo,0%,] (w)],
Yi = 0 [Hi (w), D [Uiaa*—i} (W), e [Uiaati] (W)} .

The market price is then given as

i + Bi0i (w) + (N = 1) p* +z (w)
Y+ (N —1)

i + B:0; (w) + (N — 1) <—M + s (WJ@)) + 2 (w)

p [Ui?a*—i] (w) = (33)

(e 2] [O'iyo'ii](w) Y —4

¥+ (N —1)
Next note that
. X - i + B0 + (N —2) u* + 2z (w)
p] [017 O—i] (Cx)) - 71 + (N . 2) 9
N - 1
Q; [Ji7 O—i] (Cx.)) v + (N — 2)7

implying

B D; [O-ia U*—J (w)

5. * ] _ N B 1 z(w
a;[oi,0%;] (W) it Bidi (N =2) ( a; [oi, 0] (w) I <O‘j (03,0 (w) " 1)) el
]
]

=
B [oert](©) (et Bt (N =) (o (3 (V- 1) 2 () -
a; o5, 0%,] (w) N -1

Substituting (34) into (33) yields the market price

p[oi,0%,] (w) = p.

for all w for which o; induces the inequality (32).
Step 2. Define the event

7"~ (7)) = {w € 21 (B [0 (). [on o) ) = (v + ey ey ) | < 8

and its complement

(o e (01,0%,)] — {w € Q| (B [010%)] (@), s 0™,] (@) # (p*—l— N(Af_l),Nl_l)}.
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Note that
E (u; [(on07.)]) = /[ oy T /H)] w; [(05,0%)] dr,

implying

&5
£
S,

v

B (u,[(o:.0%,)]) (39

w; |(o,0%,)| dm.
/[M(Wi)] [(7:.0%)]

AVARRN(>

Define the event

[2; > 0] = {we Q| z;[0; (w)] (p[0s,0%] (w)) >0} €B

and its complement
[2; < 0] ={w € Q| z;0; ()] (p[os0";] (w)) <0} .
Recall that we have for the procurement scenario

w; [(0,0%;)] (w) = (0) for all w € [z; > 0],

—1

implying

u; |(0;,0%,) | dr
/[W(mm (7:.0%)]

w; [(05,0%,)] dn+ 7 ([0* = (04,0%;)] N[z > 0]) u(0).

/[U*oo(o'i,a*i>}ﬂ[x¢<0}
Use p [O‘i, U*_J = p, from Step 1. and observe that for z; (w) < 0
w [(000%)] (@) = w((vi(w) —po) o @)+t (@ (@)
< u(t(0))
because (i) v; (w) > p, for all w and (ii) ¢ (z; (w)) < t(0) for all z; (w) < 0 (Assumption A4)

* ) is given as

whereby the supplied amount of 7 in state w under (a,-, o,
zi (W) = p; + B;0; (W) — 7P
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Consequently,

u(t(0) 7w ([0 = (0,0%,)] N[z; < 0]) > / w; [(0;,0%,)] dr.

[a*oc (O'i,lfii” N[z;<0]

Combining the above inequalities shows that we can establish (35) for any p* satisfying

m(z=2")u ((p* — max V;) ZN* +1 (—%;)) +(1—7(z=2))u(c)
> 7w ([o* % (04,0%)] Nz <0]) uw(t(0)+ (1 —m ([0* = (05,0%;)] N[z <0])) u(0).

Such sufficiently large p* exists if (i) u () is not bounded from above or (ii) if u (-) is bounded

from above and 7 (z = 2*) = 1.00
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Supplemental Appendix: Revisiting Kyle (1989) and going
beyond

I illustrate how Kyle (1989) employs the “irrelevance of interim price information” condition of
Proposition 1 to identify constant, symmetric BNE. Next, I slightly generalize Kyle’s original
distributional assumptions in order to clarify an ambiguous remark by him (Proposition 4).
Finally, I show why the “irrelevance of interim price information” condition of Proposition 1
fails to establish the existence of constant, symmetric BNE if the liquidity demand is noise-free

(Proposition 5).

Assumptions. Kyle’s CARA-Gaussian, common value framework with noisy lig-

uidity demand.
(A1) The Bernoulli utility function has the constant absolute risk aversion (=CARA) form
u(x)=—exp(—pz),r €R
with absolute risk-aversion coefficient p > 0.

(A2) The common asset value v, the error terms e; = 0; — v, i = 1,.... N, and the liquidity

demand z are independently and normally distributed with distributional parameter values

E(v) = 0,Var(v)=71,'>0,
E(e;) = 0,Var(e)=7.">0 for all i,
E(z) = 0,Var(z)=1."'>0.

I adopt Kyle’s notation and simply write E(.,) (u) instead of
E(ul G(y))(w) withy (w) =y.
By Assumption A2, each random variable

8 = (V—Dilo—i] — o] @) s, 2 € R



is normally distributed under 7 (- | 05, p; [0_] , a; [0_;]). For the log-normally distributed random

variable — exp (—pg.,) we have

Er 10, pilo i) ailo—i]) (— XD (—pgq;))
1
= —exp <—PE (&) + §P2Va7“w(-|ei,ﬁi[a_il,ai[a_in (gxi)) :

which yields under Assumptions Al and A2

B0, pilo il ailoi]) (U (&) (1)
= —exp—p (EW("ei,ﬁi[a—i],ai[afi}) (sz) - ﬁz' [U—i] Z;
2 P 2
—a o] (25)" — 3V Ao pilo—ilaulo-i) (v (22) )) :

The optimal demand is uniquely pinned down by the FOC

d
0 = %Eﬂ'('wmﬁi[gfﬁ’ai[Ufi]) (Vxl) — Di [O*i] T

7

2 P 2
—a [o_i] (25)" — SV ara(iopilo—ilaido_)V (:)

as

o Eripilo deuto i) (V) = Pilo]

' 20y [U*i] + pvarﬂ(‘wz',ﬁi[U—i]zai[U—iD (V>
whereby the SOC holds by our assumption v, [-] > 0. Because of

T

A

pilo—i| =p— o},
we can equivalently rewrite (2) as

Erio,p) (V) —p

x; (05,p) = '
o) = o+ oV araen )

By Proposition 1, a constant, symmetric o* € 3 such that for all
o; (W) = (u",8%,7") for all w (3)
is a BNE of I'” whenever the linear structure
i (05, p) = u* + 5°0; —7"p

takes on the following form:

* * * Eﬂ’ei, o*|= (V)_p
=1 T PV arx( 0, plo*1=p) (v)



Kyle’s main result (cf. Theorem 5.1 and Theorem 5.2 in Kyle 1989). Consider a

Bayesian market game T'P satisfying the Assumptions A1 and A2 such that

A=R xR x Ry,.

If the number of informed traders satisfies N > 3, then there exists a constant, symmetric BNE

o* € X8 such that the functional parameter values (3) are uniquely pinned down by the

following equations'

W= 0, (5)
5 = (1—¢}}lfe -0,
(N =1y 17 +p
. Ny B — i
T AT (N ] )
with
T, = Var Cosplor=p) (V) = €T (N = 1) Te + 7y + Te, (6)
- (57 (N — 1)
S Y D+ ) () ")

Regarding the zero means in his distributional Assumption A2, Kyle (1989) makes a somewhat

puzzling statement:

“The N + 2 random variables v,z, ey, ...,

ey are assumed to be normally and

independently distributed with zero means (a normalization for v and the e; but not

for z) [...]” (p.320).

!The assumption N > 3 is needed for ensuring v* > 0. The equations for 4* and v* appear under (B6) in

Kyle (1989, p.346) as

ﬂ _ (1_<IOI)T€
ANTr+p
_ )‘BTI_QOITe
vo=

ANB(ArTr+p)

I show the equivalence between Kyle’s and our expression in Step 3 of the proof of Proposition 4.



I would understand if Kyle were stating that mean zero is a normalization for v and z but
not for the e;. His original statement, however, seems to suggest that F (z) = 0 is somehow a
necessary condition. This would be strange and rather restrictive. To clarify this issue, let me

generalize the specification £ (v) = £ (z) = 0 in Assumption A2.
Generalized Distributional Assumption.

(A2%) The common asset value v, the error terms e; = 0; — v, i = 1,..., N, and the liquidity

demand z are independently and normally distributed with distributional parameter values

E(v) € R, Var(v)=7,'>0,

E(e;) = 0,Var(e)=7.">0 for all i,

E(z) € R, Var(z)=7,'>0.

Proposition 4. Under the generalized distributional Assumption A2’ the BNE parameter values

(5) remain the same for 5% and v* but instead of p* =0 we have now
B (v) - (42) B (2)

N = D)y 4+ (B2 N

Proof of Proposition 4. As point of departure, recall the Projection Theorem: If two
random variables x and y are normally distributed under 7, then x is conditionally on y normally
distributed with parameters

Cov (x,y)

Ery (x) = E(x)+ Var (y) (y—E(y), (8)
Varz.y) (x) = Var(x)— C‘O/var—((?,)y) (9)

The Projection Theorem (cf. the proof of Step 1 of Proposition 5) yields the following charac-
terization of any agent 0,;’s updated distributional parameters for the normal distribution of the

asset value:

Ty Te
By = (55 ) B0+ 6 (10
1
Var,r(.‘gi)v = - +7_. (11)

4



I proceed by proving a sequence of Steps that will culminate into Proposition 4. In what

follows I fix o*, such that for all j # ¢
7% @) = (i 37 for all w

and I write P, instead of p; [0*_2-]. For simplicity I write mg, for the conditional probability
measure 7 (- | 8; = 0;) as well as my, (- | p; = p;) for 7 (- | ; = 0;,D; = p;).

Step 1. We have

) B, ) (12

such that

T = Varil(

Yr =

Proof of Step 1. Under Assumption A2’, the random intercept p; is normally distributed.
Applying the Projection Theorem yields

Eﬂoi('\fn) (v)

Cov,, (v,D;)
- E 0; i 5 — E B
oVt Varm) p:) (p )
Couv, 5 N—-1)p*+ 0; + N-Dpu+p">..0;+
_ Eﬂ-e_ (V) + ov 0; V p ILL B Z];éz Z N Eﬂ-e_ ( )y’ ﬁ ZJ#@ J z
i Varwg D; — 1) i (N —1)~*
5 C’ovwg v pl HéZO +z B*Em)i (Z#ZO ) + Ex,, (z)
= Bn (V) Varg, ( (N —1)7*
Covy, (v,D;)3* 1 zZ Er, (2)
= E, (v)+ 2 — 0,+— —(N—-1)E,, (v)—- —2=
o ( Varg, pi v+ (N —1) ; 7B ( ) B, (V) 5

OO/U?TQ‘ (V7 pz) ,8* OOU?TQ. <V7 f)z) 6* 1 V4 E (Z)
= (1SR ) o Ie 0+~ - ,
( Varn b 7 ) O Vs, o) \ 0 F

JF



whereby I have used Er, (Z#i ej> =F (Z#i ej) = 0 as well as Er, (z) = E(z). Our

independence assumptions further imply

(N =D +5"> 40, +Z>)

Covr, (v,D;) = Couvg, (V, <

(N —=1)7*
= Covy, (v, (5— - %v - ﬁ ;ej - ﬁz))
= C’ovmi <v,§—:v) + ;C’ovmi <v,ﬁej) + C’ovmi (V,ﬁz)
= %:Varm (v)

as well as

* * * 1
Varg, (b)) = Varg, (% + B_v + B Zej n (N—Z>

v (N —1)* “ 1)
- (5) Varm Y ((N —6*1)7*) ;me e <(N —11)7*>2VW”1 )

Varz, (p,) (v) = Varg, (v)— Var. @)
o, i
. 1

8 -1 -
Ty + Te  \To + Te
= (Tv + 7—6)71 - 7 ( ) 7 ( )

<5—)2 (To+7e) " + (5—)2 ﬁ (re) " + (—(Nim)z (1)~
(6*)2 (N — 1) + (Te) (TZ)_l .
(B) (1e) (N = 1)* + (B°)* (o + 7e) (N = 1) + (1) (72) 7 (70 + 7o)

Rewriting this in terms of the conditional precision yields

o= Varg s (V)

L BPEW ey
R I A AR

= or(N=1)(7e) + 70 + 7e




where

Finally, note that

Covﬂgi <V7 ﬁ’L)

Varﬂei (pz)

and substitute accordingly.l][]

Step 2. Suppose now that

Varg, (v) =Varg, (s, (v)
COUWQZ. (V7 pz)

1 1
_ (TwtTe) 1 TI— (Tv + Te)
B N g
7* (TotTe) v I
eV -1
T

o (w) = (", ", 7") for all w

Then

Ery, (Iplo1=p) (V)

Proof of Step 2. Because of

we can substitute in (12) to obtain

Eﬂei("f)i) <V> = <1

- (%) E()+(1—¢;) (%) 0,

PiTe « PrTe *
# (5w ) (52) i + @),

(N—=L)p + 83,0 +z
(N—=1)7*

4
g Zj;éi 0; +z
(V=1

(N ;11) (Te>> E., (v)

ol (N=1)(e)\ (1 E(2)
+< By )(pz v (N—l)v*)'

'Y*

(13)

(14)

(15)



Use (13) to obtain

. W80 —"p
Z (N—=1)y
N e B0,

Substitution in (15) yields

Ery (1pi=p) (V) = (1 _ eV (Te)> Ery (V)

TI v

+<%UV—U&J>< N w g0

* p— - - —
T (N=1)" (N=Dy (N-Dy v

Observe that we have for the constant ¢* the informational equivalence
G(6:,p[0"]) =G (6:D:[0%,]) =G (8:,D:i [07] , i [07,])
so that
Ery. (Iplor1=p) (V) = By (1pi=ps) (V) -
By (10), we have

E,rei(v):( To )E(V)+ ey,

Tyt Te Tyt Te
Substituting and rearranging terms yields

Ery (plor=p) (V) = <1 LG ;1) m)) E(v)

_’_|:(1_901(N_1>7_6) ( Te ) B <90]7-e):| 01
Tr Ty + Te Tr
PrTe * PrTe *
4 (7 Np— (212 (Ny* + E (2)),
(E22) vy - (222) (v + B a)
which can be further transformed into (14).000

Step 3. The structural equation (4) holds iff the functional parameter values satisfy the following

three equations

w= )
* -1 —1 Te

((N=1)]" +pr; )+ (?n) N

/6* — (1 _SOI>T€
/\[’7'[ +p ’

* )‘B*TI_SOITG

’Y - * ’

AB* (A1t +p)

8



with

T = Var;gli(.|p[o_*}) (v) = VaT;elinn) (V) =@ (N =1)(7¢) + Ty + Te,
N LSS R
(67" (N = 1) + (7c) (72)
and
A= [(N=1)
A= [Ny,

Proof of Step 3. Rewrite the structural equation (4) as

Er(10, plo=p) (V) =D
Ar + PTfl

w0 —'p =
Substituting (14) in the right hand side yields

Er(10,plo*=p) (V) =P
A1+ pTl_l

= () pw- (B2 e+ )

1 T
— (= =116,
T 079 ()

1 PrTe
+ — —7"N — 1] .
/\I+P711 [ﬁ Tr

Consequently, the p*, %, ~v* must satisfy the equations

. )\I%pﬁl ((:_j) E(v) - (;’{Zj) (Np* +E(z))) ,

1 T
= ——— [(1— =16,
& A1+ o7t [( #1 (71)}
* 1 SOITG :|
= — *N—1].
K M+t [ﬁ*fﬂ




Rearranging yields the desired expressions

wo = ) _1 e )
(N =)™+ ) + (822 N
6* _ (1 - @]) Te
MNTr+p
L lE Mg e
A+ prrt AT P A" (At +p)’

TI
which make the above analysis comparable to Kyle’s original analysis. In particular, observe
that we have recovered Kyle’s original characterizations of the parameter values 5*,~* while the
distributional assumption F (v) = F (z) = 0 recovers Kyle’s original characterization p* = 0.000
The next proposition implies that Kyle’s analytical approach—based on the “irrelevance of
interim price information” condition of Proposition 1-—cannot establish the existence of constant,

symmetric BNE if the liquidity demand is noise-free.

Proposition 5. Suppose that the Assumptions A1 and A2’ hold with the qualification that
7(z=2) =1 for some 2 € R. Then there does not exist any constant, symmetric o* € ¥

for which the structural equation (4) holds.
Proof of Proposition 5.

Step 1. The common asset value v under any conditional probability measure o, ( | Zgil 9k>

is normally distributed with distributional values

s ® = (58P0 e (B0) o

1
Varﬂei('EkN:lek) v) = NTe+ 7y
Proof of Step 1. For the normally distributed v the sample mean Zgil %’“ is a ‘sufficient

statistic’ for the data sample (04, ..,0,,) and therefore also for <0i, ZkN:l 9—]\’;> Consequently, we

have
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Next observe that S &% = v + 3 e and Y 6 are informationally equivalent.

k=1"N N

x=vandy=v+ chvﬂ % in the Projection Theorem to obtain

Bratmino) ) = Bz, ) )

s
Cov (V, v+ Zgﬂ eﬁ) N e N e,
- E S _ g Ck
W)+ Var <V+ZkN:1 %) <V+ZN (V+ZN>>
Cov (v, v+ S %)
- Var <v—|— Z]kvzl S Var <v+ ch\; o

= 1

Substituting

N N
Cov <V, v+ Z %) = Cov(v,v)+ Z Cov <V,%) =Var(v),
k=1 k=1

N N
€L € 1
Var | v+ E —) = Var(v)+ 5 Var (=) =Var(v) + =Var (eg),
< — N pt (N) N

and rearranging yields the desired expression (16). For the variance we have

VaTﬂ(-lZivzlek) (v) = Varfr(-\sz:l BWk) (v)

N 2
Cov (v, V+ D i %)
Var <v—|— Eszl %)

_1\2 _ _
_ —1 (Tvl) _ 7—’01%7—61
= 7, —

= Var(v) —

-1 1 -1 -1 1.1

7_11 +N7—e Tv +N7—e
1

Nt.+ T,

0
Step 2. For any constant, symmetric o* € X8 with

of (w) = (p*, 5%,~") for all w and i
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we have

Ty Te Ny*plo*] — Np* — z
By (ol (V) = <—) E(v)+ < ,

To + NTe To + NTe 5
1
Nr.+71,

Varz, (o) (V) =

Proof of Step 2. Due to our assumption of a noise-free liquidity demand we have informa-
tional equivalence between p [¢*] and Zf\il 0; by the one-to-one mapping

Np* + B30, 0y + 2
Nry*

plo’] =
<~

Ny'plo*] - Np* — = A
, > 6.

6 k=1

Substituting (17) in (16) yields the desired result. The same argument applies to the variance.[JC]

(17)

Step 3. There do not exist any parameter values
(u*,0%,7") e Rx R x Ryg

which satisfy the structural equation

Ery, (Iplo*1=p) (V) =D

pr+ B0 —'p = : (18)
(N—ll)q/* + pVarz, (|plo*)=p) (v)
Proof of Step 3. By Step 2, (18) becomes
p+B70; —¥'p (19)

v e Ny*'p—Nyp*—=z
(T’U—:NT€> E (V) + T’U—:NTE < 5* )
1 1 '
(N—1)~* + pNTE+T»U

Since 6; does not appear on the RHS of the equation (19), we must have 5* = 0. However, for
£* = 0 the RHS of the equation is not well-defined as we have to divide by zero. This concludes
the proof of Proposition 5 because the structural equation (18) is necessary for the “irrelevance
of interim price information” condition of Proposition 1.[1]

The intuitive reason why we could not identify any constant, symmetric BNE for Kyle’s model

with noise-free liquidity demand had been already formulated by Vives (2011) as follows:
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“The reason should be well understood: If the price reveals the common value,
then no seller has an incentive to put any weight on his signal (and the incentives to
acquire information disappear as well). But if sellers put no weight on their signals,
then the price cannot contain any information on the costs parameters. This is the

essence of the Grossman-Stiglitz paradox (1980).” (p.1927)
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