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Abstract

This paper considers the sensitivity of Genetic Matching (GenMatch)
to the choice of balance measure. It explores the performance of a newly
introduced distributional balance measure that is similar to the KS test
but is more evenly sensitive to imbalance across the support. This measure
is introduced by Goldman & Kaplan (2008) (i.e. the GK measure). This
is important because the rationale behind distributional balance measures
is their ability to provide a broader description of balance. I also consider
the performance of multivariate balance measures i.e. distance covariance
and correlation. This is motivated by the fact that ideally, balance for
causal inference refers to balance in joint density and individual balance
in a set of univariate distributions does not necessarily imply balance in
the joint distribution.

Simulation results show that GK dominates the KS test in terms of
Bias and Mean Square Error (MSE); and the distance correlation mea-
sure dominates all other measure in terms of Bias and MSE. These results
have two important implication for the choice of balance measure (i) Even
sensitivity across the support is important and not all distributional mea-
sures has this property (ii) Multivariate balance measures can improve
the performance of matching estimators.

JEL classification: 138, H53, C21, D13

Keywords: Genetic Matching, Balance measures, causal inference,
Machine learning

1 Introduction

In an observational setting, treatment is not randomly assigned to units. The
implication is that treatment exposure may be related to some covariates or/and
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the outcome. In the likely event that covariates are imbalanced across treatment
arms, a naive mean causal effect estimator will be biased. Rosenbaum & Rubin
(1985) show that using the probability of exposure to treatment conditional on
observed covariates (propensity scores) one can adjust for imbalance. This can
be operationalized by matching based on propensity scores.

However, there have been several advances in the propensity score matching
methodology. The key problem is that propensity scores are unknown and
have to be estimated. These advances have highlighted the weakness in the
traditional approach of using logit or probit model to estimate propensity scores.
First, estimating propensity score involves a specification problem, while it is
known that covariates that are correlated with both treatment and outcome
should be included in the model (see Oyenubi (2020) for example), how these
covariates should be included in terms of higher-order terms is ad hoc at best.
Ho et al (2007) noted that to use nonparametric matching to avoid parametric
modelling assumptions, a researcher must know the parametric functional form
of the propensity score equation. However, until we have the specification of
the propensity score that balances all covariates we have to keep repeating the
process. Second, the choice of balance measure used to identify the “correct”
propensity score specification can influence the result (Oyenubi & Wittenberg,
2020).

To avoid this problem Imai & Ratkovic, (2014) introduce Covariate Bal-
ancing Propensity Score that incorporates balancing condition directly into the
estimation of propensity scores while Diamond & Sekhon (2013) side-line spec-
ification search by focusing on balance in relevant covariate using Genetic algo-
rithm. Oyenubi & Wittenberg (2020) show that even under the methodology of
Diamond & Sekhon (2013) the choice of balance measure is still important.

In this paper, I explore the findings of Oyenubi & Wittenberg (2020). The
authors show through several simulation studies that the choice of balance mea-
sure influences the Bias and Mean Square Error (MSE) of matching estimates
under genetic matching (GenMatch)!. In this paper, I provide further evidence
in this respect by considering a (univariate) balance measures that were not
considered by Oyenubi & Wittenberg (2020) and also extend their results to the
case of multivariate measure of balance.

Primarily, two main analysis was performed. First, the fact that that the
Kolmogorov Smirnov (KS) (i.e., the default distributional balance measure un-
der GenMatch) suffers from low sensitivity at the tails (Buja and Rolke (2006);
Goldman and Kaplan (2018)) is noted. This is problematic because balance
measures that ignore imbalance irrespective of where they occur can introduce
Bias and inefficiency in the estimation of treatment effect. Consequently, the
current study proposes a way to solve this problem by considering the Dirichlet
approach of Buja and Rolke (2006). This approach uses probability integral
transform to attain more even sensitivity. Goldman and Kaplan (2016 & 2018)
proposed a two-sample variant of this test that ease the computation of critical
values (the original proposal uses permutation test). In this study, I refer to

1 And by extension any matching estimator that seeks to optimize balance.



this measure as the GK measure?. The use of this measure is motivated by the
fact that it is by design, more evenly sensitive to imbalance across the support
of the distributions being compared.

This is in contrast to the KS measure which (as mentioned earlier) has lower
sensitivity at the tails. This distinction is important in the context of the re-
sults of Oyenubi & Wittenberg (2020) (and for the choice of balance measure
in general). Their result shows that the standardized mean difference (SMD)
is more effective at minimizing Bias and MSE than the distributional measures
(i.e. the KS test and the entropy measure) considered in their study (even
under a realistic simulation design). However, in this study, I argue that this
result is counter-intuitive given the arguments made in the literature in favour
of distributional measures of balance (see Austin, 2009; Huber 2009; Belitser et
al. 2011; Imai et. al, 2008). One of such arguments suggests that distributional
measures of balance provide a broader description of imbalance (Austin, 2009;
Huber 2009; Belitser et al. 2011; Imai et. al, 2008). The implication of this
is that under the assumption that “better balance” leads to “better effect esti-
mates”, distributional measures should be more effective. In comparing the KS
and the GK measures, it is important to note that “distributional measures”
as a category of balance measures consist of different measures which vary in
how they quantify the difference between distributions. For example, given the
distinction between the KS and the GK measure, if the GK measure is found to
outperforms the KS measure, this will imply that even sensitivity to departure
from balance across distributions matters?.

Second, the GK measure and all other balance measures considered by
Oyenubi & Wittenberg (2020) assess balance at the individual covariate level.
As noted by Iacus et. al (2012), the goal of measuring imbalance is to sum-
marize the difference between the multivariate empirical distribution of pre-
treatment covariates. Furthermore, Andrei & McCarthy (2019) argue that ad-
equate individual covariate balance does not necessarily imply balance in the
multivariate sense. In general, marginal independence does not imply joint in-
dependence (Andrei & McCarthy, 2019). Following Andrei & McCarthy (2019)
who propose the use of distance covariance (Székely et al, 2007) as a test of bal-
ance/independence, in the current study, the performance of this multivariate
balance measure in the context of GenMatch is examined. Specifically, I use
the distance covariance, correlation, and p-value of distance correlation (dCov,
dCor, and dCorP respectively) as measures of balance under GenMatch.

For the first analysis, the simulation result shows that the GK measure
outperforms the KS measure both in terms of Bias and MSE*. This suggests that

2Kaplan  (2019) implement the measure in Stata, however the code
used in this paper is the R version downloaded from the author’s website
“https://faculty.missouri.edu/ "kaplandm /#distinf”

31 acknowledge that the entropy measure introduced by Oyenubi & Wittenberg (2020) can
be argued to be a distributional balance measure that is sensitive across the support. However,
this measure was dominated by a number of other measures in their simulation results, perhaps
because it involves the estimation of kernel density which may affect its efficiency.

4Note that both measures (GK and KS) are used in conjunction with t-test of difference
in means as suggested by (Diamond and Sekhon, 2013).



part of the reason for the poor performance of distributional balance measures
in Oyenubi and Wittenberg (2020) is the kind of balance measure that was
used’. On the other hand, while the GK measure does not outrightly outperform
the SMD, its performance is more competitive than the other distributional
measures considered by Oyenubi & Wittenberg (2020). Specifically, the SMD
has a slightly lower Bias while the GK measure has a slightly lower RMSE. This
suggests that the contrast between the two measures can be thought of as a
trade-off between Bias and precision, where the SMD produces lower Bias at
the expense of precision, and the GK measure does the opposite.

For the second analysis, result further show that the multivariate balance
measures (dCov and dCor) dominate all the univariate measures in terms of
MSE while dCov, in addition, dominates all other balance measures (both uni-
variate and multivariate) in terms of Bias. This result implies that multivariate
measures of balance are not just more effective in guiding the specification of
propensity score (as shown by Andrei & McCarthy (2019)), but also perform
better as after matching balance test (at least in this context). These results
further strengthen the main argument in Oyenubi & Wittenberg (2020) that
the choice of balance measures does matter. In general, the results of the cur-
rent study suggest that multivariate balance measures are more promising than
their univariate counterparts. However, since the use of multivariate measures
in this context is relatively new, more evidence will be needed to check if this
performance varies in different contexts.

The rest of the study is organized as follows, the next section reviews the
literature to provide a justification for using the GenMatch approach. The Gen-
Match algorithm is reviewed and the GK and multivariate measures used in this
study are introduced. This is followed by the sections that discuss the simula-
tion design, presents and discusses the results, while the last section concludes
the study.

2 Literature review

Oyenubi & Wittenberg (2020) argue that since balance measures vary in terms of
what they are designed to capture (i.e. where some focus on certain parts of the
distribution like mean or mean and variance, others compare distributions), one
should expect variation in their performances when they are used as a yardstick
to optimize balance for matching estimators. This variation is often ignored in
the literature where in most cases the performance of different balance measures
is taken as a given. For example, while researchers conduct robustness checks
to see if the result is sensitive to the type of matching (e.g. one-to-one versus
kernel matching) no such check is conducted to investigate the sensitivity of
results to the choice of balance measure.

5Note that one can argue that the entropy distance measure proposed by Oyenubi &
Wittenberg (2020) is also sensitive across the support, an important difference is that the
entropy measure require the estimation of kernel density.



The authors noted that the choice of balance measure is particularly impor-
tant in the case of GenMatch which is based on Genetic Algorithm (Mitchell,
1989; Carr, 2014). This is because it is well known that the performance of ge-
netic algorithms depends on the fitness function which, in the case of GenMatch,
is defined by the balance measure. Therefore, differences in fitness function (or
balance measure) can lead to differences in optimal results. This argument can
be extended to other matching methods since all matching methods seek to op-
timize balance. While Oyenubi & Wittenberg (2002) focused on showing this
with different simulation studies under GenMatch, one can argue that this point
is implied by other results in the literature. For example, Belitser et al. (2011)
show that when different balance measures are used to select the specification
of propensity score, the correlation between Bias and Imbalance vary with the
choice of balance measure.

The proposed GK measure is introduced by Goldman & Kaplan (2018)%,
refining an idea from Buja and Rolke (2006). There are two versions of the
test: the first version assesses equality of distribution quantile-by-quantile and
displays the range of quantile values for which differences are statistically sig-
nificant (Kaplan, 2019). The second version is a global goodness-of-fit (GOF)
test similar to the KS test. Goldman & Kaplan (2018) show that this test may
be preferred to the KS test because its sensitivity to deviations is more evenly
spread across the distribution. The fact that the KS test suffers from low sensi-
tivity at the tails is known in the literature (see Eicker (1979)). Even sensitivity
across the support is important because it may better identify imbalance or
cases where there are thin/no common support problem (in finite samples) ir-
respective of where they occur’. Therefore, differences in sensitivity of balance
measures can be important in influencing the performance of matching estima-
tors. This is well highlighted by the examples presented by Goldman & Kaplan
(2018), where the authors noted that if the null hypothesis distribution is uni-
form (0,1), even a sample maximum of one million (which is impossible under
the null) will not cause KS test to reject. Furthermore, with a sample size of
20, even 5 observations equal to one million cannot persuade KS test to reject
at 10%. (see footnotes 3 and 4 in Goldman & Kaplan (2018) and Kaplan (2019)
for details).

The distinction between multivariate measures of balance and balance mea-
sures that assess balance in individual covariates in order to declare balance
overall is also important. This is because (as stated earlier) individual bal-
ance on many covariates does not necessarily imply joint balance. In a recent
paper, Andrei & McCarthy (2019) show that the dCov measure (which is a
multivariate measure of statistical dependence between random vectors analo-
gous to product-moment correlation) detects significant differences between the
joint distribution of covariates across treatment arms, even when the (absolute)
SMD is less than 0.2 for each covariate. This is important because the literature
suggests that values below 0.2 for SMD is indicative of adequate balance (Rosen-

61t is implemented in Stata by Kaplan (2019)
"Thin or no support problem can increase biases and variances of matching estimators (see
Crump et al, 2009; Khan and Tamer, 2010)



baum & Rubin, 1985). This echoes the sentiment of Sekhon (2007) and Iacus
et. al (2012) who have noted that ideally, measures that capture discrepancies
in higher-order moments and are multidimensional should be preferred.

As shown in Oyenubi & Wittenberg (2020), depending on the Data Gener-
ating Process (DGP) the discrepancy in treatment effect estimates that stems
from the choice of balance measure alone can be large enough for results to be
drastically different. Therefore, the choice of balance measure has implication
for inferences that come from analyses that relies on matching estimators. Ex-
isting simulation studies that examine the performance of matching estimators
focus on other choices that must be made when matching estimators are em-
ployed. These choices include: the specification of the propensity score model
(both in terms of distributional assumption (e.g. probit versus logit model) and
the kind of covariates that should be included in the model, see Zhao (2004),
Schmidt and Augurzky (2011) and Oyenubi(2020)); and the choice of matching
algorithm or the type of matching to be used (i.e. Nearest neighbour, Radius,
stratification or Kernel matching see Caliendo and Kopeinig (2008)) etc. While
these choices are important because of their implication for Bias and MSE of
the resulting matching estimate, my argument in this article is that the choice
of balance measure is equally important. This is because the success, or lack
thereof, of all these other choices, are measured by the balance measure (i.e.
after matching balance)®. The result of Oyenubi & Wittenberg (2020) suggests
that these choices interact with each other to determine the Bias and MSE of
matching estimators.

3 Methodology

3.1 Why GenMatch?

First introduced by Hollard (1992), Genetic Algorithms belong to the class of
approaches used in adaptive aspects of computation — search, optimization,
machine learning, parameter adjustment, etc (Shapiro, 1999). Shapiro (1999)
noted that Genetic Algorithms are essentially reinforcement learning algorithms,
and like other learning algorithms, their performance is determined by the fitness
function.

In the causal inference literature, matching is a popular approach to reduce
Bias due to selection under the ignorability assumptions (see Rosenbaum and
Rubin (1983)). The main idea is that under ignorability, matching units across
treatment arms will allow for causal inference. All matching methods have one
goal: to balance (ideally the joint) distribution of covariates across treatment
arms after matching. To achieve this, matching algorithms depend on balance
measures to decide when matching has achieved its goal.

The most popular matching approach — Propensity Score Matching (PSM)
— has been shown to have many flaws (see Iacus et al (2012), Imai and Ratkovic

8 This implies that an ineffective balance measure can erode the effect of other choices made
earlier in the process.



(2014) and Goller et al (2020) for some discussion on this). Traditional PSM
is based on manual optimization by iteratively tweaking matching parameters
and checking balance. It, thus, often leads to suboptimal solutions (King et.al,
2017). To mitigate this problem a number of matching methods and alternative
approaches to estimating propensity scores have been proposed in the litera-
ture. GenMatch is unique amongst the new matching approaches in that the
choice of balance measure is left to the researcher. In view of the finding that
balance measures can influence the performance of matching estimators, this is
important?.

3.2 Review of Genetic Matching

GenMatch is a general matching approach that combines the strengths of Maha-
lanobis distance matching and PSM. The algorithm searches a range of balanc-
ing scores to find the score that optimizes the covariate balance after matching
(Diamond and Sekhon, 2013). The balancing scores are indexed by a weight
matrix W such that each weight matrix corresponds to a different balancing
score. GenMatch minimizes a generalized version of the Mahalanobis distance
by incorporating an additional weight matrix W. It is given by

d(X;, X;) = {(Xi - X;) (5—1/2)/ WSt (X, — Xj)}l/2

where X is the matrix of covariates and S is the sample covariance matrix of
1

X. S~/ s the Cholesky decomposition of S i.e. S = 572 (S‘i)T. W is a
k by k positive definite matrix and k is the dimension of X (i.e., the number of
covariates). All elements of W are zero except the main diagonal which consist
of k parameters that must be chosen.

Note that estimated Propensity scores can be included as one of the co-
variates under GenMatch. In general, both propensity score and Mahalanobis
distance matching can be thought of as limiting cases of GenMatch. If propen-
sity scores contain all relevant information required to balance the covariates,
all other variables will receive zero weight, or more appropriately, enough weight
just to make sure that W is positive definite. In this case, GenMatch is equiva-
lent to propensity score matching. On the other hand, GenMatch will converge
to Mahalanobis distance (even when propensity score is included) if it is the
more appropriate distance measure for the sample (i.e. when the propensity
score fails to achieve the optimal level of balance in the covariates). In less
extreme cases, GenMatch allocates weights to the propensity scores and all co-
variates (Diamond and Sekhon, 2013; Oyenubi, 2018 & 2019).

GenMatch requires the user to specify a loss function and a covariate balance
measure. Note that the loss function (or fitness function) is a function of the
balance measure. The default loss function under (the R implementation of)

90ther matching and weighting algorithm do not allow the user to choose their preferred
balance measure. For example, the Covariate Balancing Propensity Score and Entropy bal-
ancing.



GenMatch minimizes the largest individual discrepancy based on P-values from
KS tests and paired t-test for all the covariates. The algorithm uses P-values so
that results from different tests can be compared on the same scale. Because the
sample size is fixed within the optimization, the general concern that P-values
depend on sample size does not apply (Imai, King, & Staurt, 2008; Diamond
and Sekhon, 2013).

Interested readers should see Diamond & Sekhon (2013) for technical details
concerning GenMatch.

3.3 Comparing the KS and the GK measures

As previously noted, there are two forms of the GK test. In this exposition,
focus is given to the Global goodness-of-fit (GOF) version. Let f(z) and g(y)
be the distributions to be compared and let F' (r) and G (r) be the corresponding
empirical cumulative distribution functions (CDF) — where r refers to points or
quantiles on the CDF. The KS test hypothesis can be written as

Hy:F(r)=G(r) forallr

If Hy is true, then F' (r) and G(r) should be “close” to each other; if not the
test rejects the hypothesis. KS defines “close” as the maximum vertical distance
between the CDFs, i.e.

KS = sup, |F (r) — G(r)]

In other words, to compare the distributions, the KS statistic uses the “biggest
gap” between the CDFs and consequently has uneven sensitivity to differences
in different parts of the distribution (Goldman & Kaplan, 2018). Parizzi & Brcic
(2011) note that the KS statistic tends to be more sensitive near the centre of
the distribution relative the tails (also see Kvam & Vidakovic (2007)). This is
because the KS distance does not distinguish between the shapes of the CDF
curves, taking only the maximum distance (which occurs at one point) into
account (Wang & Chang, 2012).

Buja and Rolke (2006) propose a Dirichlet-based approach to achieve more
even sensitivity. Their approach uses probability integral transform to reduce
the problem to that of the ordered statistic from the standard uniform distri-
bution. The ordered statistic is known to follow a known ordered Dirichlet
distribution in finite samples (Goldman and Kaplan, 2018). While the technical
details behind this approach are beyond the scope of the current study, it suf-
fices to say that the Dirichlet approach achieves even sensitivity relative to the
KS test. Goldman & Kaplan (2018) improve this approach in terms of compu-
tational time and power. Interested readers should see Buja and Rolke (2006)
and Goldman & Kaplan (2016 & 2018) for technical details. Also, see appendix
B for a sketch or the argument presented in Goldman & Kaplan (2018) that
describes how the GK measure works.

Under the Dirichlet approach, the GOF null can be written as

Hy : all Hy, are true



This GOF test distinguishes whether all Hy, are true or at least one is false.
This leads to greater sensitivity to imbalance at any r. The question about
which specific r is false is handled by the second version of the test which is not
of interest to this study.

3.4 Review of Distance covariance and correlation mea-
sures (multivariate measures of independence)

The fact that marginal balance for a set of covariates does not necessarily imply
joint balance underscores the importance of considering measures of balance
that capture discrepancy in joint distributions. Furthermore, assessing balance
in marginal distributions for inference that should ideally be based on joint
distribution introduces the possibility of increase type I error (see Lee (2013)
for some discussion on multiple testing problem in the context of PSM).

Szekely et al (2007) introduce the dCov and dCor measures of statistical
independence between two sets of vectors. This approach is based on Energy
distance (i.e. a measure based on powers of Euclidean distance) and was in-
troduced to replace the standard non-parametric goodness-of-fit tests in high
dimensions. This measure can be used to compare distributions or the distri-
butions of two samples e.g. treatment and control samples (Huling and Mak,
2020).

Let X € RP and M € R? be p and ¢ dimensional vectors with finite first
moments. Note that X and M need not be of the same size or dimension. Let
fx (1) = B[], far (s) = B[] and fx,um (t,5) = E [¢/020XM] e
characteristic functions of XM and (X M). The dCov of X and M is defined
by

V2 (X, M) = || fx.r (t.5) — fx (8) far (5)]°

where || .||, is the weighted Ly norm defined as || (¢, 5)”2; = f:rq "y (t, 5)2) w(t, s)dtds;
where the positive weight w(ts) is such that the integral exists!’. Therefore, v
can be used to measure the distance between the joint characteristic function
and the product of marginal characteristic functions. It then forms the basis for

test of independence between X and M i.e.,

Hy: fxm = fxfu vs Hi:fxm# fxfu

the distance covariance of X is

V3 (X) = [Ifx,x (t,s) = fx () fx (3)]]
So that the dCor is given by
XM 2 ()2 (M) = 0

R*(X,M) ={ X2y’
0, 2(X)v*(M)=0

10There are a number of weights that can be used with this measure. In this study, the
weight advocated by Székely and Rizzo (2020) is used because it has the property that the
resulting distance will be both rigid motion invariant, and scale equivariant. Note that rigid
motion can be explained as a way of moving points on a plane such that (a) relative distance
between stays the same (b) the relative position of points stay the same.



dCov = 0 is equivalent to statistical independence (similar argument can be
made for dCor).

Similar to Hainmueller (2012), who use entropy distance to recover a set
of weights that balance the distribution of (individual) covariates, Huling and
Mak, (2020) use the energy distance to recover the Energy Balancing Weights
(EBW).

4 Simulation design

Monte Carlo studies are useful in examining the small sample properties of
different matching estimators. Oyenubi & Wittenberg (2020) use 3 simulation
studies, two of which can be argued to be unrealistic in practical settings. In
this study, I focus on the simulation study that mimics conditions that can be
found in reality.

In the spirit of Empirical Monte Carlo Study (EMCS), the simulation follows
the work of Diamond & Sekhon (2013). The simulation is based on real data
(i.e. the Dehejia and Wahba (1999) sample of the Lalonde (1986) experimental
data set). The covariates include both discrete and continuous variables, there
are eight covariates, six of which are binary variables. Since the design is not
new, we present the details of the design in appendix A.

The parameters of the simulation are as follows; the treatment effect is
1000, the sample size is 445 (185 treated and 260 control observations) and the
simulation is conducted 1000 times'!. Note that the ratio of control to treated
units is constant across simulations. Note that the value of the parameter
@ = —1.5 i.e. the case where the initial imbalance is higher in Oyenubi &
Wittenberg (2020) see the appendix for details.

5 Results

The result of the first simulation (univariate balance measures) is presented
in table 1. Table 1 reports the percentage Bias relative to the true treatment
effect and the Root Mean Square Error (RMSE). We present the result when the
estimation of the treatment effect is done with and without Bias correction (Bias
Correction refers to regression adjustment see Sekhon (2008)). To compare our
results to the one in Oyenubi and Wittenberg (2020), we include the balance
measures they used in their study (the exception is the entropy distance because
it requires significantly more computation time).

In general, the result is similar to the one presented in Oyenubi & Wittenberg
(2020) i.e. the performance of GenMatch varies with the choice of balance
measure and the performance under Bias correction (BC) is worse than the
alternative (No BC) in every case. Furthermore, the default measure has the

11 Oyenubi & Wittenberg (2020) use 500 replication. However there is no difference in the
ranking of the performance of different balance measures and the point estimates are very
similar.
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lowest Bias and RMSE when the estimation is with Bias correction. These
results are consistent with what was found by Oyenubi & Wittenberg (2020).
Note that this means the GK measure did not perform better than the KS
measure under Bias correction. However, note that the result under BC is
almost always worse than the result without Bias correction.

Focusing on the results without Bias correction (i.e., where all measures
perform better in terms of Bias and RMSE!?): the GK measure dominates the
KS measure both in terms of Bias and RMSE. This suggests that distributional
measures vary in their performance and measures that have even sensitivity
should be preferred. While the SMD still dominates all other measures in terms
of Bias, the GK measure dominates all other measures in terms of RMSE. In
other words, there appears to be a trade-off between Bias and RMSE when it
comes to the performance of SMD and GK.

We now consider the performance of multivariate measures of balance. For
this analysis we consider the dCov, dCor and the p-value of the dCor measure
(dCorP), the result is shown in Table 2.

The result shows that except for the case of the P-value of dCor, whose
performance is the worst across the tables, the best performing multivariate
measure dominates the best performing univariate measure both in terms of
Bias and RMSE in both categories (i.e. BC and No BC). To put this in context
note that the Bias of dCor is the lowest at 0.8% of the true treatment effect
and this figure is almost half the size of the percentage Bias for the SMD, which
dominates the univariate measures in terms of Bias. This result echoes the
result of Andrei & McCarthy (2019) on the efficacy of multivariate measures.

The results of this study show that the SMD is still a competitive measure
of balance but relative to it, (univariate) distributional balance measures that
are evenly sensitive across the distribution can increase the precision of match-
ing estimates. Furthermore, the distinction between univariate and multivariate
balance measures is important in terms of Bias and precision of matching es-
timators. While multivariate measures are relatively new and more evidence
will be needed to establish, their behaviour in different settings, the available
evidence in the literature (Andrei & McCarthy, 2019; Huling and Mak, 2020),
and the results of this study, suggest that they will provide useful alternatives
to existing measures.

6 Conclusion

This study considers variation in performance of Genetic matching algorithm
that stems from differences in the choice of balance measure. The result con-
firms and extends the result of Oyenubi & Wittenberg (2020). Specifically, the
study finds that a distributional balance measure that is evenly sensitive to de-
parture from balance is more effective than distributional balance measures that
don’t have this property. Results also indicated that such measures may reduce
the MSE of matching estimate relative to the SMD. Lastly, the result shows

12Except the default measure that has higher RMSE when there is not bias correction
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that multivariate balance measure largely performs better than their univariate
counterparts under GenMatch.

The fact that the performance of balance measure might vary with the DGP
and the matching algorithm is acknowledged. Therefore, there is need for more
research to investigate the performance of the measures considered here (espe-
cially the multivariate measures) in different contexts. For example, because
of the type of simulation design adopted with this study, it was impossible to
investigate if the performance found here is sensitive to sample size.

Concerning the choice of balance measure this paper shows that (i) Even sen-
sitivity across the support is important and not all distributional measures has
this property (ii) Multivariate balance measures can improve the performance
of matching estimators.
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Table 1: Simulation Results (Univariate measures)

Bias RMSE
BC No BC BC No BC
Mean 41.3 25.2 584.91 577.52
Standardized difference in means 43.2 1.7 607.31 585.69
Default 33.8 29.4 552.55 749.86
GK 42.8 2.6 592.41 571.71
BC: Bias correction by regression No BC: No Bias correction (1000 replications)
Table 2: Simulation Results (Multivariate measures)
Bias RMSE
BC NoBC BC NoBC
dCov 30.4 4.0 445.09 442.39
dCor 31.2 0.8 453.16  442.52
dCorP 21.4 193 612.53 2402.15

BC: Bias correction by regression No BC: No Bias correction (1000 replications)
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