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1 Introduction

The question of how to allocate and rebalance capital between DM and EM currencies is central
to the investment strategies of many FX investors. Several stylized features of DM and EM
economies are widely understood to affect FX portfolio management decisions, including the
observation that capital typically flows into (out of) EMs in periods of high (low) investor risk
appetite and when yields in developed markets are low (high) and that episodes of contagion are
associated with EM capital flow retrenchments (e.g., Milesi-Ferretti and Tille, 2011; Forbes and
Warnock, 2012; Fratzscher et al., 2018). However, these aggregate observations may obscure a
more subtle network of interactions between the risk-return profiles of DM and EM currencies
that are also relevant to investors. To study these interactions, we develop and estimate an
empirical network model that captures risk and return spillovers among 20 of the most ac-
tively traded and liquid currencies in the world over the period from 2006-07-12 to 2021-12-31,
including 12 DM currencies and 8 EM currencies.

Our analysis builds on that of Greenwood-Nimmo et al. (2016, hereafter GNR), who develop
a network model to characterize risk and return spillovers among the G10 currencies over the
period from January 1999 to October 2014. Our approach differs from theirs in several important
respects. First, unlike GNR, who focus on DM currencies, we consider a broad cross-section
of DM and EM currencies with the explicit objective of studying spillovers between the two
groups. Second, we consider a more recent sample period, covering a number of major events
that have occurred since the end of the GNR data set, including the COVID pandemic. Third,
unlike GNR, who study higher-order FX moments using the moments of the option-implied
(risk-neutral) distribution of future exchange rate changes for each currency, we work with
realized moments. This choice is necessitated by our desire to study a large cross-section of
currencies including many EM currencies, several of which do not have sufficiently liquid FX
options markets to yield reliable estimates of risk-neutral moments. Finally, given that our
model includes EM currencies that may be more prone to extreme movements than their DM
counterparts, our model includes the first four moments of the return distribution, while GNR
exclude return kurtosis from their analysis.

We being by constructing a daily database of log-returns and higher-order realized moments
for 20 major currencies quoted against the US dollar over the period from July 2006 to December
2021 using intraday data from Refinitiv. Working with mid-rates sampled at 5-minute intervals
to balance precision in construction of the moments against concerns about microstructure noise
(see also Do et al., 2016), we compute the first four realized moments of the return distribution

at daily frequency: the log-return, realized variance, skewness and kurtosis. We then extract



the innovations in the realized moments using auxiliary first-order autoregressions, following
the precedent of Menkhoff et al. (2012), Chang et al. (2013) and GNR.

To analyze the network structure of FX returns and risk innovations, we use the gener-
alized connectedness framework of Greenwood-Nimmo et al. (2021), which is an extension of
the network methodology developed by Diebold and Yilmaz (2009, 2014). Diebold and Yil-
maz were the first to explore the network structure of the matrix of forecast error variance
(FEV) decompositions obtained from an unrestricted reduced form vector autoregression (VAR).
Greenwood-Nimmo et al. demonstrate that by subtly modifying the normalization applied to
the FEV decompositions by Diebold and Yilmaz, one obtains a network representation that is
well-suited to arbitrary aggregations of the connectedness matrix. This matters for our pur-
poses, as it allows us to switch our frame of reference from the level of individual variables, to
the currency-level and to the level of currency groups (e.g., the DM or EM currency groups),
all while maintaining the comparability of the estimated spillover effects. In addition, given the
high-dimensional nature of our model and the typical practice of estimating financial network
models over rolling-samples, which limits the number of observations that can be used to fit
the model, we set aside classical estimators such as ordinary least squares in favor of the Least
Absolute Shrinkage and Selection Operator (LASSO) of Tibshirani (1996). This reduces the
number of freely estimated parameters by allowing irrelevant predictors to be excluded from
the model on an equation-by-equation basis, an approach that accords with current practice
in the financial connectedness literature (e.g., Demirer et al., 2017; Greenwood-Nimmo et al.,
2019; Bostanci and Yilmaz, 2020; Greenwood-Nimmo and Tarassow, 2022).

Our analysis proceeds in two parts. First, we establish a benchmark by analyzing the
structure of the FX network over the full sample, from July 2006 to December 2021. This
provides a picture of the average structure of the FX network over our sample period. This re-
veals that spillovers within moment groups (e.g., return-to-return spillovers, variance-to-variance
spillovers etc.) are generally stronger than spillovers between moment groups (e.g., variance-to-
return spillovers) but that strong cross-moment spillover effects also exist. Consequently, the
common practice of estimating separate network models for returns and risk measures (e.g.,
Diebold and Yilmaz, 2009, who estimate separate models of equity return spillovers and volatil-
ity spillovers) may result in mis-specification of the network model, as cross-group spillovers that
are not estimated are implicitly set to zero. Likewise, while within-currency spillovers (e.g., the
spillover from currency i volatility to the return on currency ) are typically stronger than cross-
currency spillovers (e.g., the spillover from currency ¢ volatility to the return on currency j),

cross-currency spillovers are not negligible. In fact, under aggregation, cross-currency spillovers



account for the majority of systemwide FEV over the full sample, at 58.5%. We also observe a
clear difference in the behavior of DM and EM currencies over the full sample. DM currencies
tend to be more influential than their EM counterparts in the sense that they create stronger
outward spillovers. In addition, DM currencies are more integrated within the FX network in
the sense that a greater proportion of their FEV is explained by inward spillovers than is the
case for EM currencies. On average, DM-to-EM spillovers exceed EM-to-DM spillovers by 2.7
percentage points, indicating that EM currencies as a group are net recipients of DM currency
shocks on average over the full sample.

Next, we analyze time-variation in the pattern and intensity of spillovers using rolling sam-
ples of 250 trading days. We find that currency markets become more strongly interconnected
during periods of stress, in keeping with the results of Bubak et al. (2011) for EM currencies and
GNR for DM currencies.! GNR argue that this may reflect more frequent or more substantial
portfolio rebalancing by FX investors during volatile periods, when risk appetite may decline
and liquidity may become a binding constraint. What is new is our finding that the time-
varying pattern of spillover activity is strongly influenced by bilateral spillovers among DMs
and EMs, which tend to change more rapidly than DM-to-DM and EM-to-EM spillovers. A
plausible explanation for the rapid adjustment of bilateral DM /EM spillovers lies in the stylized
fact that net capital flows from DMs to EMs are volatile and prone to reversal during periods
of elevated uncertainty and reduced risk appetite (e.g., Forbes and Warnock, 2012, and the
references therein). This suggests that investors rebalancing away from EMs may contribute to
the elevated FX connectedness that we observe in times of stress. We provide indirect evidence
of this phenomenon via an auxiliary regression exercise, which reveals that a set of global push
factors that are believed to drive capital flows to EMs can explain more than 40% of variation
in the net DM-to-EM spillover. To the best of our knowledge, ours is the first study to provide
statistical evidence on the linkage between bilateral DM /EM spillover activity and the factors
that drive capital flows between DMs and EMs and adds to the evidence of a link between FX
connectedness and trade policy uncertainty put forth by Huynh et al. (2020).

This paper proceeds as follows. In Section 2, we provide a concise literature review. In
Section 3, we discuss the construction and cleaning of our dataset. In Section 4 we outline our
estimation methodology. We present and discuss our results in Section 5 and we conclude in
Section 6. Additional details are provided in an Appendix, while an Online Supplement provides

further information on our data cleaning routine.

1t is also consistent with evidence from other asset classes, including equity (e.g., Diebold and Yilmaz, 2009;
Demirer et al., 2017) and credit derivatives (e.g., Greenwood-Nimmo et al., 2019; Bostanci and Yilmaz, 2020;
Ando et al., 2022).



2 Literature Review

In a seminal contribution to the literature on FX spillovers, Engle et al. (1990) reject the
so-called heatwave hypothesis that news has localized country-specific effects in favor of the
meteor shower hypothesis that intraday volatility spillovers exist across markets. This has the
important implication that the moments of the exchange rate return distribution can serve to
transmit information among markets. This result has since been widely studied. Using an LM
testing procedure robust to high levels of kurtosis in the data, Baillie and Bollerslev (1991)
do not find evidence of systematic volatility spillovers in their analysis of four major floating
currencies. By contrast, Hong (2001) proposes a novel procedure to test for Granger-type
causality in variance, and finds evidence of volatility spillovers among the German mark and
Japanese yen. Melvin and Melvin (2003) study high-frequency data for five distinct regions
(Asia, the Asia-Europe overlap, Europe, the Europe-America overlap and America) and find
evidence of both within-region heatwave effects and cross-region meteor shower effects, with the
former being stronger. Likewise, Cai et al. (2008) also study high-frequency data for the same
five regions and again find within-region effects to be the more economically significant factor.

Since the publication of the DY method in 2009, it has been widely applied to the analysis of
FX volatility transmission. Examples include Bubdk et al. (2011), Diebold and Yilmaz (2015),
Huynh et al. (2020), Wen and Wang (2020) and Wang et al. (2023). The evidence from this
literature points to the existence of clusters in the global FX network (e.g Diebold and Yilmaz,
2015, identify a cluster of five strongly connected European currencies) and highlights time-
variation in the intensity of FX volatility spillovers, which tend to increase in times of stress.
Barunik et al. (2017) and Barunik and Kocenda (2019) both consider asymmetric generalizations
of the DY method based on realized semi-variances, which provide a means of integrating
information on the sign of returns into the calculation of their variance, thereby providing
a distinction between ‘good volatility’ and ‘bad volatility’. More recently, Gabauer (2020)
proposes an alternative to the popular DY method in which volatility impulse response functions
are computed from a DCC-GARCH model, and provides evidence of time-varying volatility
spillovers among the Swiss franc, the euro, Sterling and the Japanese yen.

While there is a large literature on FX volatility spillovers, studies of higher-moment spillovers
among FX markets are rare. This is despite wide recognition of the importance of the higher-
order moments of the returns distribution for portfolio allocation and risk management. For
example, Scott and Horvath (1980) describe general conditions under which investors will ex-
hibit preferences over skewness and kurtosis. In practice, many FX investors will exhibit a

preference for skewness in a desired direction and an aversion to both volatility and kurtosis.



Furthermore, as Jondeau and Rockinger (2000) note, given that skewness and kurtosis charac-
terize the tail behavior of the return distribution, they are important for the measurement of
value-at-risk, which is fundamental to modern risk management practices. Consequently, it is
surprising that so little published research has considered skewness and kurtosis spillovers in
the FX market.

Based on the analysis of generalized impulse response functions obtained from a fractionally
integrated VAR model, Do et al. (2016) provide evidence on the nature and extent of realized
volatility, skewness and kurtosis spillovers among FX markets. They note an interesting differ-
ence in the behavior of DMs and EMs, in the sense that they find stronger evidence of realized
volatility and kurtosis spillovers among DMs than EMs. Meanwhile, GNR construct a network
model using option-implied estimates of the higher-order moments for the G10 currencies to
analyze spillovers among returns, risk-neutral volatility and risk-neutral skewness innovations.
Their results indicate that the intensity of FX risk and return spillovers increases in bad states
of the world, often spiking in conjunction with large movements in the VIX, the TED spread
and the federal funds rate. This suggests that systematic risk factors play an important role in
driving FX risk and return spillovers.

The insights derived from this literature have important implications for portfolio diversifi-
cation, portfolio rebalancing and hedging strategies (Barunik et al., 2017). For example, in his
analysis of volatility spillovers among equity and FX markets, Kanas (2000) argues that volatil-
ity spillovers may increase the non-systematic risk faced by international investors, thereby
reducing the gains from diversification. Likewise, GNR argue that increased skewness spillovers
among currencies raise the risk of coordinated crashes of the type studied by Rafferty (2012),
which raises the incentive for carry traders to hedge against crash risk. Meanwhile, the dif-
ferences in the spillover behavior of DM and EM currencies documented by Do et al. (2016)
raise interesting questions about the potential diversification benefits of combining DM and EM
currency investments. Progress on methods to formalize the use of connectedness measures for

portfolio management has recently been made by Broadstock et al. (2022).

3 The Dataset

All of the exchange rate data that we use is expressed in units of foreign currency per US dollar
(USD).? In selecting which currencies to include in our sample, we balance two considerations.

First, we seek to ensure that the currencies in our sample are heavily traded. This is important,

2Maintaining consistency in the quoting convention across currencies facilitates comparisons of higher-order
risk measures across currencies. The currency abbreviations that we use conform to the alpha codes in the ISO
4217 standard published by the International Organization for Standardization.



because we rely on there being enough intraday variation in quoted bid and ask prices to ob-
tain accurate estimates of the higher-order realized moments for each currency. We proceed by
selecting every currency that accounts for 1% or more of over-the-counter (OTC) FX turnover
(excluding the USD), as reported in the 2019 triennial survey of turnover in foreign exchange
markets published by the Bank for International Settlements.® This yields a sample of 19 of
the world’s most heavily traded currencies, with 12 DM and 7 EM currencies. Our second con-
sideration is to ensure that our sample achieves good global FX coverage, with a representative
set of DM and EM currencies from each major region. This draws attention to an omission
from the 19 currency pairs selected so far—there is no currency of any EM in the European
Union. Consequently, we add USDPLN to our sample, which has the 23rd highest OTC FX
turnover (at 0.6% on a net-net basis) and which has a long history of high-quality intraday FX
data available from Refinitiv. Consequently, we arrive at a sample of M = 20 currency pairs.”

Our sample contains the following 12 DM currencies: the Australian dollar (USDAUD),
the Canadian dollar (USDCAD), the Swiss franc (USDCHF), the euro (USDEUR), the British
pound (USDGBP), the Hong Kong dollar (USDHKD), the Japanese yen (USDJPY), the Ko-
rean won (USDKRW), the New Zealand dollar (USDNZD), the Norwegian krone (USDNOK),
the Swedish krona (USDSEK), and the Singaporean dollar (USDSGD). In addition, our sample
includes the following 8 EM currencies: the Brazilian real (USDBRL), the Chinese renminbi
(USDCNY)?, the Indian rupee (USDINR), the Mexican peso (USDMXN), the Polish ztoti (US-
DPLN), the Russian ruble (USDRUB), the Turkish lira (USDTRY), and the South African rand
(USDZAR). Note that our classification of DMs and EMs is consistent with the distinction be-
tween ‘advanced economies’ and ‘emerging market and developing economies’ adopted by the

International Monetary Fund (2020).

For each currency, we use intraday data over the period 2006-07-12 to 2021-12-31 to char-

3See Table 2 of the report, available via https://www.bis.org/statistics/rpfx19_fx.pdf.

4Other studies of FX connectedness have used larger datasets, including Wang et al. (2023) who study 30
currencies and Wen and Wang (2020), who analyze 65 currencies. However, our sample size is comparable to
those of other studies using high-frequency data, such as Barunik et al. (2017) and Barunik and Koéenda (2019),
both of which study six DM FX markets and Do et al. (2016), whose study includes 27 FX markets.

5China maintains a managed floating currency framework. The remnimbi is traded in two markets: while the
offshore renminbi (USDCNH) is largely based on market trading, the onshore renminbi (USDCNY) is regulated
and only allowed to trade within a 2 percent range from a given value that is set each day at 9.15 am. The
framework has evolved over time. Between July 2005 and July 2008, the currency referenced a basket of currencies
and a fixed trading band; between July 2008 and June 2010, the CNY was fixed to the USD; after July 2010 the
managed float was reinstated and the trading band gradually expanded (from 0.3 percent between January 1994
and May 2007, then 0.5 percent to April 2012, then 1 percent to March 2014 and thereafter it was set at its current
level of 2 percent). The fixing mechanism has gradually changed as well to shift to a more market-determined
exchange rate. The current regime, implemented in August 2018, bases the daily midpoint rate on the close
of CNY against a basket of currencies on the previous day and quotes from inter-bank dealers, along with a
countercyclical adjustment that gives authorities flexibility to affect the level of the exchange rate. Unfortunately
the CNH is only available from February 2011 in our dataset, so we are constrained to working with the CNY
in order to include the GFC in our sample. However, the CNY and CNH are highly correlated over our sample
period and share similar dynamics.


https://www.bis.org/statistics/rpfx19_fx.pdf

acterize the distribution of exchange rate returns at daily frequency. While it is possible to
obtain data on the returns and a variety of higher-moment risk measures for each currency
from commercial data providers, we elect to construct our own measures using high-frequency
intraday data from Refinitiv. The benefit of this approach is that it affords us precise control at
all stages of data-cleaning and moment construction, which results in higher-quality estimates
of the realized moments with fewer outliers.

We begin by constructing mid-rates as the mid-point of the bid and ask prices at intraday
five-minute intervals. This results in n = 288 intraday observations. We then use these intra-
day mid-rates to compute the first four realized moments of the return distribution at daily
frequency: the log-return, realized variance, skewness and kurtosis. The use of a five-minute
sampling frequency balances asymptotic considerations in the estimation of the realized mo-
ments against the adverse impact of microstructure noise.® We consider a trading day to start
at 21:05GMT and to end at 21:00GMT and we remove weekends from our sample, as well as a
selection of fixed and floating public holidays in the US (see Andersen et al., 2003, for a similar

approach). The daily log-return for currency i on day ¢ is obtained as follows:

n

it = § Tt

J=1

where 75 j = log (pit,j /pit,j—1) is the jth period-to-period intraday log-return, with p; ; denoting
the jth intraday mid-rate. A simple estimator of the realized variance of returns for the ith

currency is obtained as the sum of squared intraday returns:

n
E 2
U‘/;'t — rit,j .

=1

It is common to scale the realized variance by the number of trading days per year, IV, to obtain

the following annualized variance measure:
Vie =N -UVi.

The realized variance captures the dispersion of returns, which is a measure of uncertainty.

5While one may use data sampled at 30-minute intervals to compute the realized variance, this would only
provide 48 intraday observations, which may be inadequate to obtain reliable estimates of the higher-order realized
moments that we study. To verify that our treatment of the data does not introduce undesirable distortions,
we conducted a careful comparison of our risk and return measures against corresponding series obtained from
Bloomberg. In general, our measures are very similar to their Bloomberg counterparts. The principal differences
are observed in the higher-order realized moments, with our estimates exhibiting fewer large outliers than their
Bloomberg equivalents. This reflects differences in our approach to data cleaning relative to Bloomberg, as well
as our use of a 5-minute sampling frequency as opposed to the 30-minute sampling frequency used by Bloomberg.
A detailed comparison is available from the authors on request.



Realized skewness measures the degree of asymmetry of the returns distribution and can be

estimated as follows:

Qu =y rh; [ WV
j=1

Under our quoting convention, ();; > 0 implies that there is a tendency toward depreciation of
currency ¢ against the USD, while Q;;+ < 0 reveals a tendency toward appreciation against the

USD. Realized kurtosis can be constructed as follows:
n
Kit = nzr?t,j/ (UVi)?.
j=1

The realized kurtosis measures the mass in the tails of the return distribution; larger values of
K;; indicate a higher probability of extreme exchange rate returns.

A range of standard descriptive statistics for the log-return and the three higher-order real-
ized moments for each currency are reported in Table 1. For convenience, currencies are ordered
by DM/EM status first and by alphabetical order of their ISO 4217 alpha codes second. The
table reveals that, over our sample period, EM currencies have typically offered investors higher
returns than DM currencies at the cost of higher volatility and more pronounced skewness. Re-
alized kurtosis also tends to be higher among EM currencies, reflecting a higher risk of extreme
movements of EM currencies. In addition to these general traits of DM and EM currencies, the
table also draws attention to several interesting features of specific currencies. For example,
both the HKD and CNY are managed currencies, and this is reflected in their low volatility
against the USD.

<< < Insert Table 1 about here >>>

To develop intuition for the time series properties of the returns and realized moments, we
plot the average of each measure for the DM and EM currency groups in Figure 1. The figure
provides visual evidence of several phenomena documented in Table 1—on average, EM currency
returns are higher but more volatile than DM currency returns with considerably greater tail
mass. In addition, the figure reveals considerable time-variation in the returns and higher-
order moments for both the DM and EM currency groups. Returns for both groups exhibit
well-defined periods of elevated volatility around the GFC, during the FEuropean sovereign debt
crisis, following the Brexit vote and with the outbreak of the COVID crisis. These same events
are also clearly visible in the realized volatility plots and can be discerned in the realized

skewness and realized kurtosis plots.

<<< Insert Figure 1 about here >>>



The figure also draws attention to an issue that we must address prior to estimation of
our VAR model—the realized moments display greater persistence than the exchange rate log-
returns. To account for this, we follow Menkhoff et al. (2012), Chang et al. (2013) and GNR and
isolate the innovations in each of the higher-order moments as the residual from a first-order
autoregression. For example, the realized variance innovation for currency 4 in period t, vy, is
estimated as:

by = Vig — i + biVig_1, (1)

where d; and b; are the estimated intercept and autoregressive parameters. The set of innova-
tions obtained in this way for the ith currency is denoted v;, g+ and k;;, with the hat symbols
suppressed to avoid notational clutter. Following the approach of GNR, it is the innovations to

the realized moments as opposed to their levels that will be used in estimation.

4 Measuring Connectedness via FEV Decomposition

Diebold and Yilmaz (2009) were the first to show that a decomposition of the forecast error
variance from a VAR model can be interpreted as a weighted directed network. Their technique
has subsequently been generalized by Diebold and Yilmaz (2014) to achieve invariance to the
order of the variables in the VAR model and by Greenwood-Nimmo et al. (2021) to facilitate
block aggregation of the estimated network. We adopt the aggregation-robust framework of
Greenwood-Nimmo et al., because it allows us to switch freely between different levels of aggre-
gation in order to study different aspects of FX connectedness (e.g., spillovers among individual
currencies and spillovers among groups of currencies).

Consider a set of currencies indexed by ¢ = 1,2,..., M observed at daily frequency over
time periods indexed by ¢t = 1,2,...,T. For each currency, we observe the daily log-return
on the spot exchange rate, expressed in foreign currency units per US dollar, r;;. In addition,
for each currency, we observe the innovation to the realized variance, skewness and kurtosis of
returns, denoted vy, ¢ and kj;, respectively. The 4 x 1 vector y;; = (7it, vit, Git, kit)/ collects the
endogenous variables for the ith currency. The currency-specific variables can be collected into
a vector of global variables to obtain y, = (Y14, Yoy, --->Yps) - The dimension of ¥y, is d x 1,
where d = 4 M.

The first step in constructing our network statistics is to estimate a VAR model that captures
the cross-sectional and dynamic interactions among the variables in y,. VARs are typically
estimated using classical techniques such as ordinary least squares (OLS). This was the technique

adopted by GNR. However, our model is considerably larger and, in a high-dimensional setting

10



such as ours, the overfitting problem associated with unrestricted estimation by OLS can be
severe. Consequently, we follow Nicholson et al. (2017) and introduce sparsity into the VAR
parameter matrices by implementing the Least Absolute Shrinkage and Selection Operator
(LASSO) proposed by Tibshirani (1996).” Shrinkage and selection estimators have been used
to address the overfitting problem in the financial connectedness literature by Demirer et al.
(2017), Greenwood-Nimmo et al. (2019), Bostanci and Yilmaz (2020) and Greenwood-Nimmo
and Tarassow (2022), among others.

Nicholson et al. (2017) propose a unified framework for the estimation of large sparse VARs
called VARX-L. The VARX-L framework accommodates many alternative sparsity patterns,
ranging from the simple case in which predictors are selected in an unstructured manner to
several structured settings in which predictors are selected in groups (e.g., by lag). We estimate
what Nicholson et al. refer to as a Basic VARX-L model, in which the LASSO L; penalty
term is applied in order to zero out individual elements of the VAR parameter matrices with-
out imposing any structure on the sparsity pattern. A notable benefit of the unstructured
approach relative to structured alternatives is its computational tractability, which arises from
the separability of the objective function.

Prior to estimation by LASSO, it is advisable to standardize the variables by centering each
series and dividing by its standard deviation. This ensures that the magnitude of the penalty
term is unaffected by differences in the scale of the variables in y,. The standardized data is

denoted g,. The p-th order reduced form VAR in 9, is given by:

P
Y =p+ Z Aj'gt—j + Uy, (2)
j=1

where p is a d x 1 vector of intercepts, the A;’s are d X d matrices of unknown autoregressive
coefficients and w; is a d x 1 vector of reduced form errors with mean zero and positive definite
covariance matrix 3.5 We estimate (2) by LASSO, with the LASSO penalty parameter being
selected optimally for each equation. Although this is more computationally demanding than
selecting a single global penalty parameter for the system as a whole, it allows the degree of
shrinkage to vary across equations, resulting in greater flexibility in estimation.

For the ith equation of (2), abstracting from deterministic terms and with p = 1, the LASSO

"A comparison of our key estimation results using OLS and LASSO is available from the authors on request.
81n practice, we find that a lag order of p = 1 is sufficient to capture the autocorrelation structure in the
data, which decreases rapidly beyond lag one for all variables in the system.
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solves the following minimization problem:

T d 2 d
a; = arg mj“(Z it — Y il | N Y |ai] >7 (3)
t=1 j=1 j=1
where a; denotes the ith row of the VAR(1) parameter matrix and where A\; > 0 denotes the
equation-specific penalty parameter. We select \; following the procedure described in Nicholson
et al. (2017), using 10 grid points and a grid depth of 50.

The VAR model (2) has the following vector moving average representation:
oo
Y=o+ Z Bju;_j, (4)
§=0

where the Bj’s are obtained recursively as B; = A1Bj_1 + AsBj_ o+ ..., forj = 1,2,...
with By = Iy and Bj = 0 for j < 0. Pesaran and Shin (1998) show that the h-steps-ahead

generalized forecast error variance decomposition (GVD) is given by:

1 —h 2
() Ujjl > - (€;BXe€;)
ﬁi“j - h / /
>0 €;BiEBe;

, (5)

fori,j =1,...,d, where oj; is the jth diagonal element of 3 and €; is a d x 1 selection vector,

the ith element of which is one with zeros elsewhere. 195}2].

expresses the proportion of the
h-steps-ahead FEV of variable ¢ that can be attributed to shocks in the equation for variable
j. The GVD is order-invariant, unlike alternative variance decompositions based on triangular
decompositions of the residual covariance matrix. However, because the GVD is based on non-
orthogonal disturbances, the sum of the estimated FEV shares may exceed one. For this reason,
following Greenwood-Nimmo et al. (2021), we apply the following normalization:

W)

R R (6)
=) d h) "’
de:l ﬂz(e)j

h)

which restores a proportional interpretation of the FEV shares. Specifically, 0&_

; measures the
proportion of the systemwide FEV at horizon h accounted for by the contribution of variable j
to the FEV of the ith variable.”

The h-steps-ahead d x d connectedness matrix that summarizes the d? interactions among

?Note that this normalization differs from the normalization proposed by Diebold and Yilmaz (2014) due to
the presence of the d in the denominator. The normalization proposed by Greenwood-Nimmo et al. facilitates
aggregation of the spillover statistics obtained from the network model, as it ensures that one does not obtain
spillovers exceeding 100% after aggregation.
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the d variables in ¢, may be written as follows:

i h h h
0, 0y - 6,
h h h
h h h
L 951&1 9&&2 e eflld i

where each row of C" sums to 1 /d and the matrix grand sum is 1. The i-th diagonal element

of ¢, (91@7;, measures the unilateral spillover (or loop) from variable i onto itself. We refer to

this as the own variance share, OEZ)Z Meanwhile, the (7, j)th off-diagonal element of ch), Qgi)j,
measures the spillover from variable j to variable i. The spillover from the rest of the system
to variable % is: 4
Fl,= Y 02, (8)
j=1j#i

while the spillover from the i-th variable to the rest of the system is given by:

d
h h
T.(<—)i: E: aj(e)z (9)
J=1.j#i

The total and net h-steps-ahead connectedness of variable i, Agh) and Ni(h), are defined as

follows:
Az(h) = Tfi)z + Fi(i). and Ni(h) = T.(Z)z - Fz@o- (10)
The spillover index introduced by Diebold and Yilmaz (2009) can be obtained as:
d d
SW =3, =31l (11)
i=1 i=1

The spillover measures defined above focus on pairwise spillovers among individual variables.
Following Greenwood-Nimmo et al. (2021), spillovers among variable groups can be evaluated
by means of block aggregation of the connectedness matrix (7). For illustrative purposes,
suppose that we wish to evaluate the connectedness among the M currencies in the model

having aggregated all four variables relating to each currency into M currency-level groups.
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First, note that we may write:

Bic1 Bics ... Biewm
o Bory Baro ... Baory ’ (12)
| Bym«1 Bmez .- Bumew]
where:
oL, ol oL, 0l
e e, e, o
T g ) ) (|’
qi<Tj qi$Vj qi<—q; qi<k;
(h) oM Q) (h)
L ki<—7”j ki<—vj k‘ﬁ—qj k:iﬁkj_
fori,j7 =1,2,..., M, where the block B;.; collects all of the local spillover effects for currency 4

(i.e., all spillovers occurring among the risk and return measures for currency i), while the block
B collects all of the spillover effects from currency j to currency i (i.e., all of the spillovers
affecting the risk and return measures for currency 7 that originate from the risk and return
measures for currency j). The total within-currency spillover effect for currency i is as follows:

W(h) = LZBR_Z'M, (13)

141

where 14 is a 4 x 1 vector of ones. As such, wh

.; measures the proportion of the h-steps-

ahead systemwide FEV accounted for by spillovers among the variables in #,,.'" Meanwhile,

the pairwise spillover from currency j to currency i can be measured by:

FM = B jua. (14)

i4—J

It is straightforward to construct the aggregate spillover measures for currency ¢ with respect

107t is straightforward to decompose these currency-level connectedness measures into own-variable effects
(e.g., return-to-return spillovers) and cross-variable effects (e.g., variance-to-return spillovers) if desired. To

see this, consider the within-currency connectedness of the i-th currency, WZ(Z)Z, which may be decomposed to
(h)

i ;» from the cross-variable effects, ¢ as

i1

separate the own-variable FEV contributions within-currency i, O
follows:

oM. = trace (BEZ)Z) and CZ(BZ =wh. _ oM

i4—1 i4—1 14—

e

where O™ is the total own-variable spillover effect within currency i and b

i
log-return, variance, skewness and kurtosis innovations for currency i.

represents spillovers between the
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to the other M — 1 currencies as follows:

M
]:Z-(i).z Z UyBicjta, (15)
=Ly
M
T = Y dBjcia. (16)
j=Lyi

Given ]—"Z-(Z). and ’7:@1-, the total and net connectedness of each currency can be easily computed

as follows:

and M(h) =7 — FP (17)

o<—1 i<—e)

AN =7+ F

1<—e

where Agh) measures the overall strength of currency i’s linkages with the other currencies in
the system and ./\/;.(h) reflects the role of currency 7 in the system as a net transmitter (receiver)
if J\/;.(h) > 0 (if /\/;-(h) < 0). The aggregate spillover index at the currency-level is obtained as

follows:
M h M h
sW =3 Fl=3 Tl (18)
=1 =1

As shown by Greenwood-Nimmo et al. (2021), the aggregation procedure described above

can be modified to accommodate any desired block structure in the connectedness matrix, C(".

5 Results

5.1 Full-Sample Network Statistics

Our first task is to select the forecast horizon used in construction of the GVD, h. Initial
experimentation with h = {5, 10, 15} reveals that the network is largely insensitive to the choice
of forecast horizon, as we will shortly demonstrate in the context of rolling sample analysis.
Therefore, we select h = 10 trading days, which is a common choice in the literature and
matches the forecast horizon used by GNR.

To place our subsequent analysis of the interaction of DM and EM currencies in context,
we first provide an overview of the structure and features of the global FX network. In Figure
2, we plot a disaggregate representation of the FX network over the full sample. The figure is
presented in the form of a heatmap, where the depth of shading is proportional to the strength
of the bilateral spillover effects. To facilitate interpretation of the heatmap, the variables in the

model are gathered into moment groups, such that all of the returns appear first, followed by
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all of the variance innovations and so on. Within each moment group, currencies are ordered
by DM/EM status first and then by alphabetical order of their ISO 4217 alpha codes. This
ordering has no effect on the estimated spillover effects, because the GVD is order-invariant—it
is purely a presentational choice. It does, however, draw attention to two key features of the

network.
<<< Insert Figure 2 about here >>>

First, the strongest spillovers lie on the prime diagonal of the connectedness matrix, indicat-
ing a substantial role of own-variable information in the FEV decomposition. This is consistent
with the existing FX networks estimated by Greenwood-Nimmo et al. (2016) and Huynh et al.
(2020), for example. However, on aggregate, it is bilateral spillovers that are the dominant force
in the network, accounting for 63.2% of systemwide FEV over the full sample period. The im-
portance of bilateral spillovers reflects the aggregate behavior of FX investors, whose portfolio
management decisions take account of differences in the risk-return profiles across currencies and
whose actions introduce interdependencies across the return distributions of different currencies.

Second, if one imagines partitioning the full-sample connectedness matrix in Figure 2 into
42 blocks of dimension M x M, then the four blocks on the prime diagonal contain the ma-
jority of strong bilateral spillovers in the system. This indicates that spillovers within mo-
ment groups (e.g., return-to-return spillovers, variance-to-variance spillovers etc.) are stronger
than spillovers between moment groups (e.g., variance-to-return spillovers) on average. Taking
volatility spillovers as an example, this suggests that a volatility surprise to one currency that
changes its perceived level of uncertainty is likely to spill-over more strongly to volatility in other
currencies (changing their perceived uncertainty) than to their returns or higher-order moments
(reflecting changes in their perceived up/downside risk and tail risk). This is a natural finding,
as each of the realized moments captures a different type of risk.

On a superficial level, this apparent block structure provides some support for the common
practice of modeling return and risk spillovers separately in the empirical network literature
(e.g., estimating separate VAR models for returns and volatilities, such that the network of
return spillovers and the network of volatility spillovers are independent of one-another), as in
the seminal equity market spillover analysis presented by Diebold and Yilmaz (2009). However,
developing separate network models in this way amounts to the assumption that the spillover
effects contained in the off-diagonal blocks of the connectedness matrix are negligible. This is
clearly not the case in Figure 2, where strong spillovers arise between moment groups, especially
between returns and skewness innovations and, to a lesser degree, between variance and kurtosis

innovations. This reflects the interplay of return and risk at the heart of portfolio management.
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Returning to the previous example of a volatility surprise to one currency, while it may
spill-over to volatility more strongly than to other moments, that does not rule out substantial
cross-moment effects. To illustrate the point, suppose that it is an adverse surprise that induces
a subset of investors to rebalance their portfolios away from that currency to manage their
exposure to volatility. Their divestments will put downward pressure on the exchange rate of
the shocked currency, depressing its returns and potentially affecting its downside and tail risk.
As the investors rebalance their portfolios, they will adjust their holdings of other currencies,
generating cross-currency spillover effects. One may expect these cross-currency spillovers to be
weaker than the within-currency spillovers, as the effect of the rebalancing will be spread across
many currencies. This is what we see in practice. The diagonal patterns in the top right and
bottom left triangles of the connectedness matrix indicate that cross-moment spillovers are most
pronounced within currencies (e.g., between the return and the skewness innovation for the same
currency) but the presence of faint off-diagonal blocks in the connectedness matrix indicates
that cross-moment, cross-currency spillovers cannot be considered negligible—the elements of
the 42 — 4 = 12 off-diagonal blocks in Figure 2 account for 16.9% of systemwide FEV.!!

Careful scrutiny of Figure 2 suggests that there may be distinct DM and EM blocks in the
network—for example, it seems that the block of return-to-return spillovers in the upper left of
the figure could be further divided into sub-blocks of bilateral spillovers among groups of DM
and EM currency returns. To explore this phenomenon with greater clarity, we make use of
the block-aggregation routine of Greenwood-Nimmo et al. (2021) to transform the full-sample
disaggregate connectedness matrix in Figure 2 into a currency-level connectedness matrix of
dimension M x M, which is presented in Figure 3. By analogy to Figure 2, the currencies
are ordered by DM/EM status first and by alphabetical order of their ISO 4217 alpha codes
second. Note that Figure 3 is obtained from a simple additive transformation of the information
contained in Figure 2 and that the approximating VAR model is the same in both cases, which
implies that the two figures are directly comparable and that the quoted spillover effects are

measured on the same scale.

<<< Insert Figure 3 about here >>>

" These findings show that there is value in modeling risk and return spillovers jointly and that failure to do
so would represent a mis-specification of the approximating VAR model. Barunik et al. (2017) make a similar
observation in their analysis of asymmetric FX connectedness based on realized semivariances, which leads them
to estimate a single model combining positive and negative semivariances rather than separate models for each,
as in their earlier work on equity market connectedness (Barunik et al., 2016). A corollary of this observation is
that techniques for dimension reduction (in our case, the LASSO estimator) are necessary to provide a means
to fit such high-dimensional models given the number of observations available for estimation, particularly in a
rolling-sample setting. Similar concerns underpin the adoption of LASSO and elastic net regularization for the
estimation of network models in Demirer et al. (2017) and Bostanci and Yilmaz (2020).
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Three features of Figure 3 are noteworthy. First, the strong spillovers along the prime
diagonal of the heatmap indicate that within-currency effects are strong. Note that within-
currency effects include univariate loops (e.g., the loop from the USDAUD return onto itself),
as well as spillovers among return and risk innovations for the same currency (e.g., the spillover
from the USDAUD variance innovation to the USDAUD return). As discussed above, it is
natural to see strong within-currency spillover effects, as they reflect the interplay of returns
and higher-order moment risks that underpins the overall risk-return profile of a currency.

Second, even though within-currency effects account for a large proportion of the 10-days-
ahead FEV, it is cross-currency spillovers that are the dominant force in the network as a whole,
accounting for 58.5% of systemwide FEV over the full sample.'?> There is a notable group of
strongly interconnected currencies including the European DM currencies as well as USDAUD,
USDCAD and USDPLN. This is similar to the Furopean block documented by Diebold and
Yilmaz (2015). By contrast, the remaining currencies do not form an obvious group.'® There
are several currencies for which the within-currency effect exceeds the sum of inward spillovers
from the system. This is the case for 5/8 EMs but for just 2/12 DMs. This provides an initial
glimpse of the differing behavior of DM and EM currencies, as it suggests that DM currencies
are more integrated within the FX network than EM currencies on average, perhaps due to
their greater average liquidity. A similar finding is made by Do et al. (2016), who document
stronger evidence of realized volatility and kurtosis spillovers among DMs than EMs.

Third, all but three of the EM currencies (USDMXN, USDPLN and USDZAR) exhibit weak
inward and outward spillovers over the full sample period. With the exception of USDBRL,
all of the weakly connected EM currencies are Asian. Some Asian DM currencies also exhibit
weak inward and outward spillovers, notably USDHKD and USDKRW. The weak spillovers
associated with Asian currencies may reflect the management of several of these currencies over
our sample period (USDCNY, USDHKD and USDINR) or a lack of a clear Asian block in foreign
exchange market liquidity. For example, using bid-ask spreads for the same currency pairs that
we study, Olds et al. (2021) document a lack of comovement in Asian foreign exchange liquidity,
although they find that common variation in major exchange rates is associated with common

variation in foreign exchange market liquidity for the full sample of currency pairs. The weak

2Note that the currency-level spillover index will be lower than the disaggregate spillover index by definition
if there are any non-zero spillovers among the return and risk measures for at least one currency in the network,
as these within-currency cross-variable effects are treated as unilateral loops in the currency-level network but as
bilateral spillovers in the disaggregate network.

13 Applying Ward’s minimum variance method for hierarchical cluster analysis allowing for 2-5 clusters reveals
that the nine strongly interconnected currencies form a stable cluster that is selected irrespective of the number
of clusters that we allow for. By contrast, as the number of clusters increases, the remaining currencies tend to
be clustered in pairs. Allowing for 5 clusters, we obtain three pairs—USDNZD and USDTRY, USDKRW and
USDINR, and USDBRL and USDRUB. Results of cluster analysis are available from the authors on request.
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integration of Asian currencies also has implications for portfolio diversification, as it indicates
that they are less exposed to risks coming from elsewhere in the network. Consequently, they
may offer diversification benefits with respect to non-Asian currencies.

Further aggregation of the FX network by DM/EM status using the block-aggregation
method of Greenwood-Nimmo et al. (2021) yields a 2 x 2 connectedness matrix, which reveals
that bilateral spillovers among the DM and EM currency groups account for 24.5% of sys-
temwide FEV. Furthermore, this exercise reveals that DM-to-EM spillovers exceed EM-to-DM
spillovers by 2.7 percentage points, indicating that EM currencies as a group are net recipients
of foreign shocks on average over the full sample.

To illuminate the degree to which each currency influences/is influenced by the rest of the
global FX network and to explore the extent of the heterogeneity across currencies, we compute
measures of influence and dependence at the currency level following Greenwood-Nimmo et al.
(2021). The dependence of the ith currency is defined as Dgh) = ]:i@. / (]—'i(i). + WZ@Z) and the
influence of the ith currency as Ii(h) = ./\fi(h)/(T(h)» + 7

o TF;s)- Consequently, the dependence index

takes values in the unit interval, with smaller (larger) values indicating that the ith currency
is less (more) dependent on spillovers from other currencies. Meanwhile, the influence index
takes values in the interval [—1, 1], with values close to 1 signifying a highly influential currency
that strongly influences other currencies in the FX network and values close to -1 signifying a
currency that is strongly influenced by the behavior of other currencies.

The position of each currency in dependence-influence space over the full sample is plotted
in Figure 4. First, note that USDEUR lies at the upper right extreme of Figure 4, with an
influence and dependence scores of 0.18 and 0.79, respectively. This reflects the important
informational role that the euro plays in the global FX network as well as its deep integration
in the network. This is not surprising, given that the euro is the second-most traded global

currency behind the US dollar.
<<< Insert Figure 4 about here >>>

At the other extreme, USDCNY and the USDHKD record the lowest external dependence
and influence among the currencies in our sample, with values of 0.28 and -0.62 respectively
for USDCNY and 0.14 and -0.48 for USDHKD. For both currencies, their managed adjustment
limits their fluctuations to a narrow range, and therefore affects the extent of their external
dependence. In addition, the low influence of the yuan may result in part from our use of the

onshore USDCNY exchange rate, as opposed to the offshore USDCNH exchange rate.

1 The particular behavior of the USDHKD in our model may also be affected by Hong Kong’s unique role in
yuan trading. Hong Kong is the principal location for conversion between the onshore CNY and offshore CNH.
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The remaining currencies in our sample can be roughly partitioned into two groups. First,
there is a group of DM currencies and liquid EM currencies for which the dependence index is
typically greater than 0.5 and the influence index is typically close to zero. Currencies in this
group are well-integrated into the global FX network, with many forming part of the cluster
documented above. The other group contains mostly EM currencies, all with dependence indices
less than 0.5 and negative influence indices, often substantially so. This suggests that many
EMs play a relatively weak informational role in the foreign exchange network, at least over
the full sample. Their low dependence on the behavior of other currencies also suggests that
they may offer diversification opportunities with respect to DM currencies, as they may be less

susceptible to network shocks (Broadstock et al., 2022).

5.2 Rolling-Sample Network Statistics

Full-sample network analysis provides a static impression of the average interaction of DM and
EM currencies over our sample but it does not illuminate how their interactions evolve over
time; for this, we turn to rolling-sample analysis. As a first step, it is necessary to select the
window length to be used in the rolling-sample exercises, w. In selecting the window length,
we must balance two important considerations: (i) a longer window contains more information
and will yield more precise estimates of the VAR parameters in each rolling sample; and (ii) a
shorter window will allow for greater timeliness in our rolling-sample analysis. We proceed by
comparing the network obtained using window lengths in the set w = {200, 250,300} trading
days, as in GNR. In practice, we find that the spillover statistics obtained in each case are similar,
so we proceed on the basis that w = 250 without loss of generality. A concise comparison
of the spillover indices obtained from all pairwise combinations of h = {5,10,15} and w =
{200, 250,300} may be found in Appendix A.

We begin by inspecting the 10-days-ahead disaggregate and currency level spillover indices
evaluated on a rolling-sample basis to develop intuition for the dynamic evolution of global FX
connectedness. Figure 5 reveals that the two spillover indices exhibit marked time-variation and
share similar dynamics—in particular, both show elevated spillover activity in periods of stress,

including the GFC, the European debt crisis, the wake of the Brexit referendum and during the

Offshore demand for Chinese equities is an important driver of demand for the HKD, because the Shanghai
Connect and Shenzen Connect programs allow overseas investors to trade eligible shares on the Shanghai and
Shenzen stock exchanges subject to a daily quota. Prior to the establishment of this program, offshore trading in
mainland Chinese stocks was largely prohibited. These trades are settled in CNY, with many offshore investors
converting from a foreign currency to HKD or CNH and then to CNY. This implies that a significant source of
demand for the HKD is driven by demand for the onshore CNY, generating spillovers between the two currencies
(note that the bilateral spillovers between USDHDK and USDCNY are among the strongest spillovers affecting
either currency in Figure 3).
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COVID pandemic.'® This finding is consistent with the results of Bubdk et al. (2011) for EM
currencies and GNR for DM currencies. In addition, elevated spillover activity in periods of
stress has been widely documented in other asset classes, including equity and credit derivatives
(e.g., Diebold and Yilmaz, 2009; Demirer et al., 2017; Greenwood-Nimmo et al., 2019; Bostanci
and Yilmaz, 2020; Ando et al., 2022). Following GNR, a plausible explanation of this finding is
that investors may rebalance their portfolios more frequently or more substantially in volatile
states of the world, when risk appetite is low. Furthermore, in extreme states of the world where
liquidity abruptly dries up, some investors may be forced to unwind positions on disadvantageous

terms, as described in the crash risk literature (e.g., Brunnermeier et al., 2009; Rafferty, 2012).
<<< Insert Figure 5 about here >>>

Unlike most existing network models that only contain DM currencies (e.g., Greenwood-
Nimmo et al., 2016; Huynh et al., 2020), we can investigate how the relative spillover between
DM and EM currencies evolves over time and whether changes in the relative connectedness of
these two groups contribute to the pattern of time-variation observed in Figure 5. Of particular
interest in this context is the stylized fact that net capital flows from DMs to EMs are volatile
and prone to reversal during periods of elevated uncertainty and reduced risk appetite (e.g.,
Milesi-Ferretti and Tille, 2011; Forbes and Warnock, 2012; Fratzscher et al., 2018). Such changes
in the nature of DM/EM capital flows may contribute to the elevated FX connectedness that
we observe in times of stress, and would be expected to manifest as an increased relative role of
bilateral DM/EM spillovers during volatile periods. To look for evidence of this phenomenon,
we analyze the behavior of bidirectional spillovers among the DM and EM currency groups over
rolling samples in Figure 6. In panel (a), we plot DM-to-EM and EM-to-DM spillovers over
rolling samples. In panel (b), we show the proportion of the currency level spillover index that
can be attributed to bilateral spillovers among DM and EM currencies. Lastly, in panel (c), we

plot the net spillover from the DM currency group to the EM currency group.

<<< Insert Figure 6 about here >>>

5The fact that we observe such a strong impact of Brexit on the FX network reflects several factors. First,
Brexit triggered a very large shock to FX markets. It caused the largest one-day fall in any of the world’s four
major currencies since the collapse of the Bretton Woods regime in 1971 (Costa et al., 2024). Brexit was followed
by an increase in correlation among safe haven currencies and an increase volatility transmission in general
(Dao et al., 2019), and led to a long-lived increase in FX volatility (Caporale et al., 2018). It also had a broad
international economic impact that reached far beyond the FX market, propagating through diverse channels
including its impact on banking losses (Abbassi and Brauning, 2023) and exerting global impacts on listed firms
in many countries (Hassan et al., 2024). In addition, Chulid et al. (2018) note that the effect of large FX market
shocks like Brexit may show up more in tail statistics than in volatility statistics. Consequently, the fact our
model captures spillovers of higher-order moment risks, unlike most FX network models, may partly explain the
large estimated effect of the Brexit shock.
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The figure shows that the spillover in both directions between the DM and EM currency
groups exhibits a similar pattern of time-variation to the currency spillover indices reported
in Figure 5, with notable peaks in periods of financial market stress. The indicates that bidi-
rectional information flow among DM and EM currencies increases in bad states of the world.
Panel (b) reveals that the pattern of time-variation in the currency spillover index is strongly
influenced by time-variation in the pattern of bilateral spillovers between the DM and EM
currency groups, which change more abruptly on average than within-group (DM-to-DM and
EM-to-EM) spillovers. The mean daily change in the bidirectional spillover between DM and
EM currencies is 40% larger than the mean daily change in the within-group spillover, while
the median daily change is 49% larger. Furthermore, the connectedness between DM and EM
currencies adjusts more strongly than within-group connectedness in many historical periods
of stress, meaning that risk and return spillovers among DMs and EMs assume a particular
importance for FX investors at these times. It is plausible that this is related to the behavior of
EM capital flows in times of stress discussed above. In addition, it indicates that models of the
FX network that do not include both DM and EM currencies—including GNR and Huynh et
al. (2020)—fail to capture an important source of time-varying FX connectedness, which limits
their practical usefulness as tools for risk measurement and management, particularly in bad
states of the world when such information may be most useful.

Panels (a) and (c) of Figure 6 reveal another interesting phenomenon. The net DM-to-EM
spillover is typically positive, which reflects our full-sample finding that DM currencies play a
more important informational role in the global FX network on average. However, there are
several episodes during which the net DM-to-EM spillover drops toward zero or becomes nega-
tive, which implies that the information flow from EM-to-DM currencies becomes comparable
to or even exceeds that from DM-to-EM currencies. The first of these episodes occurs in late
2007, during the GFC. The second is in 2010-11, which was a time of elevated sovereign risk
in Europe. The third occurs in 2014, around the time of the imposition of sanctions against
Russia for its annexation of the Crimea. The last corresponds to the emergence of COVID as
a global pandemic. What these episodes have in common is that they are all periods of risk-off
sentiment fueled by large adverse global shocks. This suggests that FX investors may respond
more strongly than usual to EM news in adverse states of the world, perhaps due to their efforts
to manage their exposure to EM risk at such times. We return to this point in Section 5.3.

Our model allows us to dig deeper into the different behavior of DM and EM currencies
in the global FX network. Figure 7 shows how DM/EM spillovers are distributed across

return and risk innovations. As in the full-sample results, the figure reveals that spillovers
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within moment groups (e.g., return-to-return spillovers, variance-to-variance spillovers etc.) are
generally stronger than spillovers between moment groups (e.g., variance-to-return spillovers).
Furthermore, the figure reveals substantial time-variation. For example, early in the sample,
the stongest DM /EM spillovers occur among returns. By the time of the Brexit referendum,
volatility-to-volatility spillovers are by far the strongest group, with the DM-to-EM spillover
significantly exceeding the EM-to-DM spillover, indicating a net transmission of DM uncertainty
onto EMs. The same is true during the COVID pandemic. Likewise, tail risk spillovers among
DMs and EMs intensify in the last half of the sample, with DM-to-EM skewness and kurtosis
spillovers coming to exceed their EM-to-DM counterparts during the COVID pandemic. The
intensification of bidirectional risk spillovers among DMs and EMs in the last half of the sample
suggests that diversification opportunities among DM and EM currencies may have diminished.
In most of the panels of Figure 6, the DM-to-EM spillover exceeds the EM-to-DM spillover.
However, this general result breaks down in the case of EM return spillovers onto the DM higher
moment innovations, for which there are prolonged periods of negative net spillover with respect
to EM returns in the first half of the sample. This suggests that the sensitivity of DM currency

risk profiles to EM appreciations and depreciations has diminished in recent years.
<<< Insert Figure 7 about here >>>

Given the marked time-variation in DM /EM spillovers documented above, it is natural to ask
whether the influence and dependence properties of the currencies in our sample also change over
time. To investigate this issue, in Figure 8 we draw an arrow in influence-dependence space that
shows the change in both influence and dependence over the 14 years from December 31, 2007
to December 31, 2021.'¢ The results give rise to an interesting distinction. First, consider the
DM currencies. Most experience little change in influence over this time but have become more
externally dependent. There are two exceptions, both of them Asian currencies—USDKRW
exhibits a substantial reduction in dependence, while USDHKD exhibits falling influence. Like-
wise, the EM currencies can be roughly partitioned into two groups. The USDINR, USDMXN,
USDPLN and USDZAR exhibit similar behavior to the DMs in our sample. These are among
the most liquid EM currencies and they are backed by relatively deep financial markets (see
Olds et al., 2021, and the BIS triennial survey linked in footnote 3 on page 7). Meanwhile,
among the remaining four EMs, only USDCNY records a modest increase in dependence and
influence, but that is from a low starting point. The rest have become less externally depen-

dent and less influential. The implication is that, while most DM currencies have become more

16That is, between 250-day rolling samples ending on December 31, 2007 and December 31, 2021.
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integrated within the FX network over our sample period, many EM currencies have become

less so, particularly those that have experienced instability over our sample period.

<<< Insert Figure 8 about here >>>

5.3 What Explains Net DM-to-EM Spillover Dynamics?

In light of the evidence presented above that bidirectional DM /EM spillovers peak during risk-
off episodes and that net DM-to-EM spillovers tend to become less positive or even negative at
the time of large adverse shocks, we now investigate whether bilateral DM/EM spillovers are
related to international capital flows and the factors that drive them.

We start by conducting a graphical analysis of the net DM-to-EM spillover relative to EM
capital flows. Portfolio equity and debt flows are typically recorded at quarterly frequency
as part of the balance of payments statistics. The Institute of International Finance (IIF)
maintains a capital flows tracker at monthly frequency, but no higher frequency data on EM
portfolio flows is available. Consequently, in Figure 9, we plot the IIF tracker against end-
of-month values of our DM/EM spillover statistics.'” The figure reveals that net DM-to-EM
spillovers covary weakly with EM capital flows in normal times (the correlation is 0.075) but
that large capital outflows from EMs coincide with abrupt falls in the net DM-to-EM spillover,
notably during the GFC and at the onset of the COVID pandemic. Recall from Figure 6(a) that,
in both cases, bidirectional spillovers between DMs and EMs tend to intensify, but EM-to-DM

spillovers rise faster than DM-to-EM spillovers.
<<< Insert Figure 9 about here >>>

While the low frequency of the capital flows data limits comparisons with our daily spillover
statistics, the ‘push vs. pull’ literature on the determinants of EM capital flows draws attention
to a range of higher frequency macroeconomic and financial indicators that may affect spillover
activity (e.g., Calvo et al., 1993; Fernandez-Arias, 1996). Flows to a given EM are likely to
depend on a range of domestic ‘pull’ factors, such as domestic interest rates, domestic growth
prospects and the perceived stability of the domestic economy. In addition, capital flows to
EMs as a group are affected by a range of external ‘push’ factors, including global uncertainty,
global risk appetite, DM interest rates and DM growth prospects. Given that our interest
here is on spillovers involving EMs as a group, we set aside market-specific pull factors and
instead focus on common global push factors to provide higher-frequency insights into the

evolution of DM/EM spillovers than is possible using data on capital flows directly. Our focus

"The results are comparable using period-average values as opposed to end-of-period values.
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on international factors is supported by the results of Forbes and Warnock (2012), which indicate
that domestic macroeconomic characteristics are less important in explaining extreme capital
flows than global factors. We consider the following indicators of global macroeconomic and

financial conditions:®

(i) The Chicago Board Options Exchange (CBOE) volatility index (VIX) is a forward-looking
option-implied measure of volatility on the S&P 500. It is commonly interpreted as an
‘investor fear gauge’, with abrupt increases in the VIX being associated with elevated
uncertainty and reduced investor risk appetite, both phenomena that are associated with
capital outflow from EMs. In their analysis, Forbes and Warnock (2012) use the VXO

(the predecessor of the VIX) to measure global risk due to its extended sample period.

(ii) The Treasury-Eurodollar (TED) spread is the spread between the 90-day USD London
Interbank Offered Rate (LIBOR) and the 90-day US Treasury Bill yield. The TED spread
measures liquidity in the interbank money market, which affects funding liquidity in gen-

eral. Liquidity freezes may precipitate the forced unwinding of positions by FX investors,

as discussed by Rafferty (2012).

(iii) The effective federal funds rate is a key benchmark interest rate both in the US and
globally. Adjustments to the federal funds rate not only provide information on the state
of the US economy but also affect the interest rates available on US assets and indirectly
affect foreign interest rates due to monetary policy spillovers. In their analysis of risk
and return spillovers among DMs, GNR show that the spillover index is inversely related
to the federal funds rate, which implies that bilateral spillovers strengthen (weaken) as

conditions in the US deteriorate (improve).

(iv) The US Dollar Index maintained by the Intercontinental Exchange (abbreviated DXY) is
defined as a geometric weighted average of the value of the US dollar against a basket of
six DM currencies, with the euro receiving a dominant weighting. An increase (decrease)
in the value of the DXY signifies an appreciation (depreciation) of the US dollar relative
to the basket of currencies. The DXY can be thought of as a proxy for the US dollar
factor of Lustig et al. (2011).

8The gold price is sourced from Goldhub (https://www.gold.org/goldhub/data/gold-prices). The
US-China tensions index is sourced from the Economic Policy Uncertainty website (https://www.
policyuncertainty.com/US_China_Tension.html). The global financial stress index is sourced from the Of-
fice of Financial Research (https://www.financialresearch.gov/financial-stress-index/). All remaining
series are retrieved from the Federal Reserve Economic Data Service (https://fred.stlouisfed.org/). All
series are sampled daily apart from the US-China tensions index, which is only available at monthly frequency.
To convert to daily frequency, we assume there is no change within each month and set the value for every day
in a month equal to the quoted monthly value.
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(v)

(vii)

(viii)

(ix)

(x)

Because the DXY excludes EM currencies, we also consider the Nominal Emerging Market
Economies US Dollar Index published by the Board of Governors of the Federal Reserve
System in its H.10 release. An increase (decrease) in the index value signifies an appreci-
ation (depreciation) of the US dollar against the EM currency basket. Although the two
exchange rate indices share a correlation of 0.90 over our sample, there are periods when
their behavior differs appreciably, most recently during the COVID pandemic. Avdjiev et
al. (2019) and Hofmann and Park (2020) show that the broad dollar index can be inter-
preted as an EM risk factor, with EM economies historically under-performing when the

dollar is strong.

The slope of the US yield curve measured by the spread between the 10-year and 90-
day US treasury yields conveys valuable information on the US macroeconomic outlook,
including inflation expectations and output growth expectations. The US yield curve has
also been shown to be predictive of future inflation and growth in EMs, especially those

operating dollar pegs (e.g Mehl, 2009).

The daily news-based US economic policy uncertainty (EPU) index proposed by Baker et
al. (2016) provides a timely indicator of policy-related economic uncertainty, increases in

which are associated with depressed economic activity in the US and beyond.

The gold price tends to rise during periods of uncertainty, as investors treat gold as a
safe-haven asset due to its intrinsic value and limited supply. Consequently, in periods
of uncertainty, investors may reduce their FX exposures and increase their gold holdings.
Gold has been shown to offer a hedge and a safe haven for many DM assets, but not

necessarily for EM assets (e.g., Baur and McDermott, 2010; Bekiros et al., 2017).

The Office of Financial Research global financial stress index captures systemic financial
stress at a global level by combining information on 33 indicators of financial market
conditions using a dynamic factor model. Shim and Shin (2021) show that financial stress

is associated with EM capital outflows.

The US—China tensions (UCT) index developed by Rogers et al. (2024) is a text-based
index of tension between the world’s two largest economies. Periods of elevated tension
have been associated with retrenchments of US corporate investment and adaptations of
global supply chains. Of particular important in our context is the ability of the index to

provide a nuanced characterization of the US—China trade-war beginning in 2018.

In Figure 10, the net DM-to-EM spillover estimated over 250-day rolling-samples is plotted
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against each of these international factors in turn, while the results of auxiliary regressions of
the net DM-to-EM spillover on the international factors, both individually and as a group, are
reported in Table 2. Note that the net DM-to-EM spillover and each of the international
factors are standardized to allow for straightforward comparisons that are not impeded by the
large scale differences in the raw data. Note also that we control for the COVID period in our
regressions by including an indicator variable that takes the value one from 2020-01-30 (when
the World Health Organization declared COVID a Public Health Emergency of International

Concern) until the end of our sample on 2021-12-31, and zero otherwise.
<<< Insert Figure 10 and Table 2 about here >>>

Visual inspection of Figure 10 reveals that abrupt changes in the VIX, the TED spread,
the EPU index and the financial stress index tend to coincide with abrupt reductions in net
DM-to-EM spillovers, which signify an increase in the relative role of EM-to-DM spillovers in
the FX network. The remaining international factors plotted in Figure 10 display more gradual
comovements with net DM-to-EM spillovers.

In Table 2, a positive (negative) coefficient estimate indicates that, all else equal, an increase
in the value of a given international factor is associated with a relative decrease (increase) in
the informational role of EMs compared to DMs. In the multiple regression model, each of the
explanatory variables is statistically significant, with all but the TED spread being significant
at the 1% level. This is compelling evidence that the balance of spillovers among DM and EM
currencies is contemporaneously influenced by global macroeconomic and financial conditions
that are known to affect EM capital flows. The sign of the parameter estimates in the multiple
regression model provides a simple means to classify our explanatory variables into two groups—
those associated with an increase in the relative role of EM-to-DM spillovers (negative sign)
and those associated with an increased relative role of DM-to-EM spillovers (positive sign). For
brevity, we will simply refer to EM-favoring and DM-favoring factors, respectively.

The EM-favoring group comprises the VIX, the DXY dollar index, the EPU index and
the UCT index. The VIX and the EPU index capture different aspects of uncertainty. The
link between investor fear captured by the VIX and EM capital outflows is well-established,
while EM capital flows have been shown to be sensitive to US economic policy uncertainty (see
Gauvin et al., 2014) and to DM uncertainty in general (see Bhattarai et al., 2020). Our results

suggest that the FX market becomes relatively more sensitive to EM shocks during periods

9Estimation results using the net DM-to-EM spillover obtained with the window length set to both 200 and
300 trading days are presented in Appendix A. The sign and pattern of significance of the estimated parameters
are robust across each specification. We also verify that our results are robust to lagging the explanatory variables
by one period, which mitigates concerns over endogeneity. These results are available from the authors on request.
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of uncertainty. In a similar vein, the UCT index captures friction among the world’s largest
economies. Since the start of the US-China trade war in 2018, the potential for these tensions to
result in punitive measures like tariffs has become apparent. Consequently, periods of escalating
US-China tension create uncertainty about global supply chains, weakening investor perceptions
of the growth prospects of many export-dependent EMs.?" Such escalations may encourage FX
investors to pay greater attention to their EM exposures, increasing the sensitivity to EM news.

To interpret the coefficient estimate on the DXY, one must recall that we control for the
trade-weighted EM exchange rate, and vice-versa. Consequently, it is helpful to discuss these
two coeflicients together. The negative coefficient estimate on the DXY should be interpreted
as evidence that a depreciation of DMs relative to EMs is EM-favoring. This is likely to
reflect FX investors increasing their EM exposures when EM currencies appreciate as a group,
which provides a natural explanation for an enhanced informational role of EM currencies.
Meanwhile, in our univariate regressions, the EM dollar index is the single variable with the
highest explanatory power, accounting for more than 20% of the variance in net DM-to-EM
spillovers. The broad USD exchange rate has been identified as an EM risk factor, with broad-
based USD appreciations being linked to reduced investment in EMs and the under-performance
of EM economies (e.g., Avdjiev et al., 2019; Hofmann and Park, 2020).

Besides the EM Dollar Index, the DM-favoring group comprises the TED spread, the effective
federal funds rate, the slope of the US yield curve, the gold price and the financial stress index.
The first three of these variables all convey information on aspects of liquidity. The positive
coefficients on the federal funds rate and yield curve slope indicate that tighter US monetary
policy and a steeper yield curve are DM-favoring. Given the linearity of the model, an equivalent
interpretation is that reductions in the federal funds rate and a flattening of the yield curve
are EM-favoring. This suggests that a role for search-for-yield among FX investors driven by
low US interest rates (which tend to correlate with low interest rates in other DMs) promoting
investment flows into EM assets offering higher returns.?’ Meanwhile, holding all else constant,
increases in the TED spread that signify tightening liquidity conditions are associated with a
greater relative role of DM-to-EM spillovers in the global FX network.?? Liquidity constraints
associated with spikes in the TED spread have been highlighted as a cause of abrupt currency

swings in the literature on FX crash risk (e.g., Brunnermeier et al., 2009; Rafferty, 2012). In

20Gee https://www.ft.com/content/dad45d9b6-7c74-11e9-81d2-£785092ab560 for contemporary media cov-
erage on this point in the context of the US-China trade war.

21See Lim and Mohapatra (2016), Ho et al. (2018) and Kolasa and Wesolowski (2020) for a related discussion
on quantitative easing and capital flows.

22 Although the net DM-to-EM spillover is negatively correlated with the TED spread (as seen in Figure 10(b)
and in the simple regression reported in Table 2), the relationship between the two is positive after controlling
for the other variables.

28


https://www.ft.com/content/da45d9b6-7c74-11e9-81d2-f785092ab560

particular, liquidity crunches may precipitate coordinated crashes among carry trade currency
pairs. Faced with a liquidity shortage, FX investors may be obliged to unwind carry trades
on unfavorable terms, precipitating a depreciation of the investment currency relative to the
funding currency that further squeezes other investors engaged in similar trades. Our evidence
indicates that it is DM currencies that play the more important role in transmitting the effects
of liquidity disruptions around the FX network, which is consistent with the observation that
the most well-known currency carry trades involve DM currencies on both the funding and
investment legs, such as the well-known JPY-AUD carry trade.??

The positive coefficient estimates on the gold price and the financial stability index reflect
the tendency for investors to withdraw from EM assets during periods of instability. Gold is
widely used as a safe haven by investors, which tends to increase the gold price in bad states
of the world, when the willingness of investors to hold EM positions declines. Likewise, periods
of global financial stress correlate with EM outflows.?* In periods of stress, many investors will
retreat to DM assets that are perceived to be relatively safe, increasing the informational role
of DM currencies in the FX network.

Overall, the evidence reported in Table 2 indicates that international factors that are known
to affect EM capital flows can explain more than two-fifths of the variance of net DM-to-EM
spillovers over our sample period (R? = 0.426). This is remarkably high given that we focus
only on international factors and do not consider any currency-specific variables. Knowledge
of these explanatory factors can help FX investors to better understand the dynamic evolution
of global FX connectedness and may contribute to improved risk management, particularly to
the extent that properly characterizing higher-moment risks is critical for the estimation of
quantities such as value-at-risk (e.g., Jondeau and Rockinger, 2000). It may also be useful for
national policymakers seeking to better understand FX fluctuations and related issues including

capital flow dynamics.

23 A popular method of assessing the attractiveness of a carry trade is to consider the carry-to-risk ratio, which
is the ratio of the interest rate differential between a pair of currencies to the implied volatility of that currency
pair. The higher the carry-to-risk ratio, the more attractive the carry trade. In practice, over our sample
period, many FX carry trades involved CHF, JPY or USD funding and targeted DM investment currencies,
most famously the AUD. These investment currencies tend to exhibit lower implied volatility relative to popular
funding currencies when compared against their EM counterparts. As a result, EM currencies may be viewed
as less attractive investment options for currency carry traders, which offers a plausible explanation for the
relationship between the TED spread and the net DM-to-EM spillover that we estimate.

24The positive estimated coefficient on the COVID indicator has a similar interpretation, as the Independent
Evaluation Office of the IMF’s appraisal of August 2020 notes that the COVID pandemic triggered ‘unusually
large portfolio outflows’ from EMs (Batini, 2020).
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6 Conclusion

We study the interaction between FX returns and the innovations in realized volatility, skewness
and kurtosis for a large group of 12 DM currencies and 8 EM currencies over the period July 2006
to December 2021. Our work combines several recent innovations in the analysis of financial
networks, including the aggregation-robust generalization of the DY connectedness methodology
proposed by Greenwood-Nimmo et al. (2021) and the use of a shrinkage and selection estimator
following Nicholson et al. (2017), which mitigates the overfitting problem in the estimation of
large VAR models like ours and facilitates estimation in a rolling-sample setting in which each
rolling sample is relatively small given the dimension of the model to be estimated.

We make several important findings. First, we document strong spillovers among returns
and risk measures. Over the full-sample, we find that 16.9% of systemwide FEV is due to
cross-moment spillovers, which highlights the importance of modeling returns and higher-order
risk measures jointly rather than separately, as is common in the empirical network literature
(e.g Diebold and Yilmaz, 2009). Second, we document strong bilateral spillovers between DM
and EM currencies. Over the full sample, bilateral spillovers among DMs and EMs account
for 24.5% of systemwide FEV. Third, we demonstrate a clear difference in the behavior of DM
and EM currencies over the full sample. DM currencies tend to be more influential than their
EM counterparts in the sense that they create stronger outward spillovers. In addition, DM
currencies are more integrated within the FX network in the sense that a greater proportion
of their FEV is explained by inward spillovers than is the case for EM currencies. On average,
DM-to-EM spillovers exceed EM-to-DM spillovers by 2.7 percentage points, indicating that EM
currencies as a group are net recipients of DM currency shocks on average over the full sample.

In rolling-sample analysis, we show that currency markets become more strongly intercon-
nected during periods of stress, in keeping with the results of Bubdk et al. (2011) for EM
currencies and GNR for DM currencies. Furthermore, we show that the time-varying pattern
of spillover activity is driven more by bilateral spillovers among DMs and EMs than by DM-
to-DM and EM-to-EM spillovers, with the former evolving more rapidly than the latter. A
plausible explanation for this phenomenon lies in the stylized fact that net capital flows from
DMs to EMs are volatile and prone to reversal during periods of elevated uncertainty and re-
duced risk appetite (e.g., Forbes and Warnock, 2012, and the references therein). This suggests
that investors rebalancing away from EMs may contribute to the elevated FX connectedness
that we observe in times of stress. We provide indirect evidence of this phenomenon via an
auxiliary regression exercise, which reveals that a set of global push factors that are believed to

drive capital flows to EMs can explain more than two-fifths of variation in the net DM-to-EM
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spillover. To the best of our knowledge, ours is the first study to provide statistical evidence on
the linkage between bilateral DM /EM spillover activity and the factors that drive capital flows
between DMs and EMs and adds to the evidence of a link between FX connectedness and trade
policy uncertainty put forth by Huynh et al. (2020).

We conclude by highlighting two fruitful avenues for continuing research. First, our results
indicate that aggregate FX spillover activity is counter-cyclical, rising in bad states of the
world and when US economic performance deteriorates. The development of theoretical models
that can explain this behavior would be welcome. Second, in recent research, Broadstock et
al. (2022) propose the notion of the minimum connectedness portfolio, or MCoP. The idea is
that, by determining portfolio weights in a manner that minimizes connectedness across assets,
one may construct a portfolio with reduced sensitivity to network shocks. In their study on
green bonds, Broadstock et al. find that the MCoP achieves a higher Sharpe ratio than the
minimum variance, minimum correlation or risk-parity portfolios. Of particular relevance in our
context, He and Hamori (2024) provide evidence from the cryptocurrency market that minimum
connectedness portfolios accounting for higher-order moment spillovers outperform a volatility-
based MCoP. We look forward to future research that combines these insights in the context of

higher-order moment FX network models such as ours.
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Figure 1: Average Behavior of Returns and Risk Measures for DM and EM Currencies
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NoTES: The connectedness matrix is obtained by estimation over the full sample using a forecast horizon of 10 trading
days. Variable names are abbreviated as follows: for currency XXX, USDXXX is the log-return, USDXXX_V is the realized
variance innovation, USDXXX_Q is the realized skewness innovation and USDXXX_K is the realized kurtosis innovation.
The depth of shading is proportional the strength of the spillover effect.

Figure 2: Disaggregate Connectedness over the Full Sample
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NoTEs: The currency connectedness matrix is obtained by block aggregation of the 10-days-ahead connectedness matrix
evaluated over the full sample. The depth of shading is proportional to the strength of the spillover effect.

Figure 3: Connectedness among Currencies over the Full Sample
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NoTES: The dependence of the ith currency is computed as Dgh) = .7:1-(2)./(.7:@) + wh ), while the influence of the
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ith currency is computed as Ii(h) = /\/—i(h)/(ﬁ(i)i + f(h) ). Both are constructed using a forecast horizon of 10 trading
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days over the full sample. DM currencies are marked with a black dot and EM currencies with a gray cross.

Figure 4: Influence and Dependence of Currencies over the Full Sample
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(b) Currency spillover index
NoTES: Panel (a) reports the rolling sample spillover index computed from the disaggregate connectedness matrix, while
panel (b) reports the corresponding spillover index computed from the currency connectedness matrix. In both cases, the
forecast horizon is 10 trading days and the window length is 250 trading days. The dates reported on the horizontal axis
relate to the end date of each rolling sample. The unit of measurement is percent. 2 out of 3,647 rolling samples yield
unstable solves of the VAR model and are therefore excluded from the analysis, which results in some discontinuities in
the time series plots.

Figure 5: Connectedness among Currencies over 250-day Rolling Samples
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Figure 6: Connectedness among DM and EM Currencies over 250-day Rolling Samples
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NoTES: The top panel shows total portfolio flows into EMs (including both portfolio debt flows and portfolio equity flows),
which are measured using the Institute for International Finance’s monthly tracker. The unit of measurement is billions of
US dollars. The net DM-to-EM spillover obtained using 250-day rolling samples and a 10-days-ahead forecast horizon is
converted to monthly frequency using end-of-month values and is reported in the bottom panel. The unit of measurement
is percent.

Figure 9: Total Portfolio Flows into EMs versus Net DM-to-EM Spillovers
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Appendix A: Robustness to Window and Horizon Selection

Figures A1 and A2 indicate that neither the choice of window length for the rolling sample
analysis nor the choice of forecast horizon used to construct the GVD exerts a dominant influence
on our results. Figure Al shows that the disaggregate spillover indices obtained using all
pairwise combinations of w = {200, 250,300} and h = {5,10,15} trading days exhibit similar
dynamics and share common peaks and troughs. To the naked eye, Figure Al appears to
show only three lines because, for a given window length, the choice of forecast horizon has
a negligible effect on the spillover index, meaning that the three spillover indices for a given
window length are almost indistinguishable from one-another. This is reflected in a clear block
structure in Figure A2, as only changes in the window length result in any notable variation in
pairwise correlation among the spillover indices. Nonetheless, all of the correlations reported in
Figure A2 are strongly positive, with a median value of 0.942. Meanwhile, Tables A1 and A2
demonstrate the robustness of our auxiliary regression results to the use of alternative window
lengths in the construction of the net DM-to-EM spillover.
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NoTtEs: The figure plots the disaggregate spillover indices obtained using all pairwise combinations of w = {200, 250, 300}
and h = {5,10,15} trading days. Results for our baseline setting with w = 250 and h = 10 trading days are shown in
black, while results using the other combinations of parameters are shown in gray. The unit of measurement is percent.

Figure Al: Robustness to Variations in the Rolling Window and Forecast Horizon
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NoTEs: The figure shows the pairwise common sample correlation between the disaggregate spillover indices obtained using
all pairwise combinations of w = {200, 250,300} and h = {5, 10, 15} in the form of a heatmap.

Figure A2: Pairwise Common Sample Correlation among Spillover Indices obtained using Dif-
ferent Rolling Windows and Forecast Horizons
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